M. Grajcar Comenius University, Slovakia

Slides:



Advertisements
Similar presentations
Mechanical resonators towards quantum limit: NEMS group together with NANO, THEORY, KVANTTI Mika Sillanpää assoc. prof., team leader Juha-Matti Pirkkalainen.
Advertisements

Coherent oscillations in superconducting flux qubit without microwave pulse S. Poletto 1, J. Lisenfeld 1, A. Lukashenko 1 M.G. Castellano 2, F. Chiarello.
Superconducting qubits
The feasibility of Microwave- to-Optical Photon Efficient Conversion By Omar Alshehri Waterloo, ON Fall 2014
Superinductor with Tunable Non-Linearity M.E. Gershenson M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev * Department of Physics and Astronomy,
Materials Science in Quantum Computing. Materials scientist view of qubit Materials –SiOx sub substrate –Superconductor (Al,Nb) –SiO x dielectric –Al0.
Small Josephson Junctions in Resonant Cavities David G. Stroud, Ohio State Univ. Collaborators: W. A. Al-Saidi, Ivan Tornes, E. Almaas Work supported by.
External synchronization Josephson oscillations in intrinsic stack of junctions under microwave irradiation and c-axis magnetic field I.F. Schegolev Memorial.
Coherent Quantum Phase Slip Oleg Astafiev NEC Smart Energy Research Laboratories, Japan and The Institute of Physical and Chemical Research (RIKEN), Japan.
Novel HTS QUBIT based on anomalous current phase relation S.A. Charlebois a, T. Lindström a, A.Ya. Tzalenchuk b, Z. Ivanov a, T. Claeson a a Dep. of Microtechnology.
Operating in Charge-Phase Regime, Ideal for Superconducting Qubits M. H. S. Amin D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM D-Wave Systems Inc.,
D-Wave Systems Inc. THE QUANTUM COMPUTING COMPANY TM A.M. Zagoskin (D-Wave Systems and UBC) Tunable coupling of superconducting qubits Quantum Mechanics.
Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P.
Status of Experiments on Charge- and Flux- Entanglements October 18, 2002, Workshop on Quantum Information Science 中央研究院 物理研究所 陳啟東.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Quantenelektronik 1 Application of the impedance measurement technique for demonstration of an adiabatic quantum algorithm. M. Grajcar, Institute for Physical.
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook.
Theory of the Quantum Mirage*
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
SQUID Based Quantum Bits James McNulty. What’s a SQUID? Superconducting Quantum Interference Device.
Schrödinger’s Elephants & Quantum Slide Rules A.M. Zagoskin (FRS RIKEN & UBC) S. Savel’ev (FRS RIKEN & Loughborough U.) F. Nori (FRS RIKEN & U. of Michigan)
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Coherence and decoherence in Josephson junction qubits Yasunobu Nakamura, Fumiki Yoshihara, Khalil Harrabi Antti Niskanen, JawShen Tsai NEC Fundamental.
Interfacing quantum optical and solid state qubits Cambridge, Sept 2004 Lin Tian Universität Innsbruck Motivation: ion trap quantum computing; future roads.
Single atom lasing of a dressed flux qubit
Dressed state amplification by a superconducting qubit E. Il‘ichev, Outline Introduction: Qubit-resonator system Parametric amplification Quantum amplifier.
P. Bertet Quantum Transport Group, Kavli Institute for Nanoscience, TU Delft, Lorentzweg 1, 2628CJ Delft, The Netherlands A. ter Haar A. Lupascu J. Plantenberg.
Paraty - II Quantum Information Workshop 11/09/2009 Fault-Tolerant Computing with Biased-Noise Superconducting Qubits Frederico Brito Collaborators: P.
Dynamics of a Resonator Coupled to a Superconducting Single-Electron Transistor Andrew Armour University of Nottingham.
SPEC, CEA Saclay (France),
Nonlinear Effects in Superconducting Resonators
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
M.T. Bell et al., Quantum Superinductor with Tunable Non-Linearity, Phys. Rev. Lett. 109, (2012). Many Josephson circuits intended for quantum computing.
Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Lecture 3. Granular superconductors and Josephson Junction arrays Plan of the Lecture 1). Superconductivity in a single grain 2) Granular superconductors:
Meet the transmon and his friends
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Noise and decoherence in the Josephson Charge Qubits Oleg Astafiev, Yuri Pashkin, Tsuyoshi Yamamoto, Yasunobu Nakamura, Jaw-Shen Tsai RIKEN Frontier Research.
Kink escape from a potential well created by an external perturbation LENCOS, July, Monica A. Garcia Ñustes This talk is on based on a joint.
Macroscopic quantum dynamics in superconducting nanocircuits Jens Siewert Institut für Theoretische Physik, Universität Regensburg, Germany Imperial College,
DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.
Entanglement for two qubits interacting with a thermal field Mikhail Mastyugin The XXII International Workshop High Energy Physics and Quantum Field Theory.
Dynamics of a Nanomechanical Resonator Coupled to a Single Electron Transistor Miles Blencowe Dartmouth College.
Adiabatic Quantum Computation with Noisy Qubits M.H.S. Amin D-Wave Systems Inc., Vancouver, Canada.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Measuring Quantum Coherence in the Cooper-Pair Box
Quantum Computing: Solving Complex Problems David DiVincenzo, IBM Fermilab Colloquium, 4/2007.
Quantum Theory of the Coherently Pumped Micromaser István Németh and János Bergou University of West Hungary Department of Physics CEWQO 2008 Belgrade,
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
C 60 - Single Molecule Transistor Aniruddha Chakraborty Indian Institute of Technology Mandi, Mandi , Himachal Pradesh, India.
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Quantum dynamics in nano Josephson junctions Equipe cohérence quantique CNRS – Université Joseph Fourier Institut Néel GRENOBLE Wiebke Guichard Olivier.
Violation of a Bell’s inequality in time with weak measurement SPEC CEA-Saclay IRFU, CEA, Jan A.Korotkov University of California, Riverside A. Palacios-Laloy.
Per Delsing Chalmers University of Technology Quantum Device Physics Interaction between artificial atoms and microwaves Experiments: IoChun Hoi, Chris.
Circuit QED Experiment
D-Wave Systems Inc. D-Wave Systems Inc.
Superconducting Qubits
S. Ashhab1,2, J. R. Johansson1 , A.M. Zagoskin1,3, and Franco Nori1,2
Mario Palma.
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Superconducting qubit for quantum thermodynamics experiments
or Quantum Nonlinear Optics without Photons
Josephson Flux Qubits in Charge-Phase Regime
Cavity Quantum Electrodynamics for Superconducting Electrical Circuits
Norm Moulton LPS 15 October, 1999
Dynamics and decoherence of a qubit coupled to a two-level system
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

Sisyphus cooling and pumping of linear oscillator by superconducting qubit M. Grajcar Comenius University, Slovakia A. Izmalkov, S.H.W. van der Ploeg, Th. Wagner, E. I’lichev, H.-G. Meyer Institute for Physical High Technology, Germany A. Fedorov, A. Shnirman, Gerd Schön, Institut für Theoretische Festkörperphysik Universität Karlsruhe, Germany S.N. Shevchenko, A.N. Omelyanchouk, B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine S. Ashhab, J.R. Johansson, A. Zagoskin and Franco Nori, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Japan

Outline Superconducting flux qubit Adiabatic measurement of the qubit in the ground state Spectroscopic measurement Sisyphus cooling and pumping Lower limit on the achievable temperature

Single-junction interferometer (RF-SQUID) 1 Or in normalized Units: Classical two level System!

Classical picture 1  p 2p f Particle with mass ~ CJ in potential:

Quantum Picture d p 2p f If CJ is small enough tunneling between both wells becomes possible and therefore the degeneracy is lifted. So we need Small Josephson Junctions with EJ/EC~10-100

Persistent current (flux) qubit – analogue of ammonia molecule nF B Superconducting persistent current qubit – oscillation of a magnetic dipole moment (magnetic flux), Ammonia molecule – oscillation of an electric dipole moment (f=24 GHz) N H + + H + H

Size problem and solution For quantum behavior EJ/EC~10-100 Typical parameters for aluminum technology :

Solution of the size problem ‚Size‘ problem solved in 70´s T. Yamashita et al., J. Appl. Phys. 50, 3547 (1979) This idea was dusted off by J.E. Mooij et al., Science 285, 1036, 1999

Hamiltonian. Energy surface.

Tunneling amplitude   GHz -0 0 E0 ЕС=5 GHz, g=EJ/EC=66, ЕJ=330 GHz.  0.85 0.86 0.87 0.88 0.89 0.9 0.901 0.902 0.905 0.91 0.92  GHz 20 13 8.45 5.44 3.49 2.24 2.14 2.05 1.79 1.43

Pseudospin Hamiltonian IC, f2 IC, f1 aIC (0.5<a<1) Fx 1 um

Flux qubit coupled to oscillator VT LT L CT Ib M

Adiabatic measurement away from degeneracy point

Adiabatic measurement at degeneracy point

Lagrangian of the qubit-resonator system Expanding into Taylor series up to the second order term 2

Φi Quantum approach C L L I is satisfied. At the degeneracy point b No perturbation of the measured observable [V.B. Braginsky and F.Ya. Khalili, Quantum Measurement, (Cambridge University Press, Cambridge, 1992]. The sufficient condiction for Quantum Nondemolition Measurements is satisfied.

Impedance Measurement, classical resonator LT L CT Φ VT Ib Build a resonator, connect something to it with a susceptibility different from zero and it will change its resonant frequency. Ya. S. Greenberg et al., PRB 66, 214525 (2002) DC-Squid Josephson Inductance: A. Lupascu et al., PRL 93, 177006 (2004).

Response of resonator   GHz EJ/Ec<102 =0.9 EJ/Ec103 =0.8  0.86 0.88 0.9 0.901 0.902 0.905 0.91 0.92  GHz 13 5.44 2.24 2.14 2.05 1.79 1.43

Resonant frequency of the resonator Y. Greenberg et al., PRB 66 214525 (2002). Fitting parameters

Sisyphus work Greek mythology As a punishment from the gods for his trickery, Sisyphus was compelled to roll a huge rock up a steep hill, but before he reached the top of the hill, the rock always escaped him and he had to begin again. Titian (1549) artist vision of Sisyphus work Physical realization: For atoms D. J. Wineland, J. Dalibard and C. Cohen-Tannouji, J. Opt. Soc. B9, 3242 (1992). For qubit Grajcar et al., arXiv:0708.0665 Nature Physics 4, 612-616 (2008).

Sisyphus cooling

Sisyphus pumping

Adiabatic vs. spectroscopic measurement Solid line is theoretical curve for Parameters determined from adiabatic measurement

Strong microwave driving at fmw=4.5 GHz Strong driving Transition from weak to strong driving Weak driving dc (0) A. Izmalkov et al., PRL 101, 017003 (2008) W.D. Oliver et al.,SCIENCE 310, 1653(2005) M. Sillanpää et al., PRL 96, 187002 (2006)

Landau-Zener interferometry A.V. Shytov, D.A. Ivanov, and M.V. Feigel’man, Eur. Phys. J. B 36, 263 (2003). S.N. Shevchenko et al. Phys. Rev. B 78, 174527 (2008)

More rigorous treatment of Sisyphus cooling/pumping A. Fedorov, A. Shnirman, Gerd Schön fmw=14 GHz M. Grajcar et al., Nature Physics 4, 612-616 (2008).

Spectral density of the voltage noise of the tank fmw=8 GHz

Tank circuit coupled to mechanical oscillator

Sisyphus and sideband cooling limit M. Grajcar, A. Ashhab, J.R. Johansson, F. Nori Phys. Rev. B 78, 035406 (2008)

Conclusions Superconducting flux qubits are well described by two-level (pseudospin) Hamiltonian Experimental data obtained from adiabatic and spectroscopic measurement are consistent and fully agree with the quantum-mechanical predictions to the experimental accuracy. The qubit can be used as an artificial atom for Sisyphus cooling of a low frequency oscillator (electrical, nanomechanical, etc.)

Ground state energy modulation  -  + - + m= -1/2 m= 1/2

Sisyphus cooling

Design for spectroscopic measurement

Spectroscopy of the system of two coupled flux qubits. A. Izmalkov et al., PRL 101, 017003 (2008) Without microwave driving fmw= 14 GHz fmw= 18 GHz fmw= 21 GHz

Nanomechanical oscillators Nanobridge from IPHT Jena Neik et al., Nature 443, 193 - 196 (2006) I. Martin, A. Shnirman, Lin Tian, P. Zoller Ground state cooling of mechanical resonators Phys. Rev. B 69, 125339 (2004) Prepared for measurement at temprature below1 mK in ulra low temp. lab in Košice

Quantum metamaterials Design of high efficiency microwave photon detector for GHz range G. Romero et al., Microwave Photon Detector in Circuit QED, arXiv:0811.3909v1

Four qubit sample q3 q1 q4 q2 Layout Micrograph A3 Iq3 Iq1 A2 Ib4 Iq2

Anti-Ferromagnetic and Ferromagnetic Coupling AFM FM Iq2=-10 µA Iq3=0 Iq4=-250 µA

Theoretical fits. Phys. Rev. Lett. 96, 047006 (2006) Experiment Theory

Psedo-spin Hamiltonian