MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.

Slides:



Advertisements
Similar presentations
MTH55_Lec-53_Fa08_sec_8-4_Eqns_Quadratic_in_Form.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
Advertisements

MTH55_Lec-39_sec_7-2a_Rational_Exponents.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-19_sec_4-2_Logarithmic_Fcns.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
TH EDITION LIAL HORNSBY SCHNEIDER COLLEGE ALGEBRA.
MTH55_Lec-31_sec_6-3_Complex_Rationals.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
Logarithmic Functions. Definition of a Logarithmic Function For x > 0 and b > 0, b = 1, y = log b x is equivalent to b y = x. The function f (x) = log.
Logarithmic Functions
Logarithmic Functions & Their Graphs
Logarithmic Functions Section 2. Objectives Change Exponential Expressions to Logarithmic Expressions and Logarithmic Expressions to Exponential Expressions.
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
Exponential Functions Section 1. Exponential Function f(x) = a x, a > 0, a ≠ 1 The base is a constant and the exponent is a variable, unlike a power function.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
MTH55_Lec-06_sec_1-3_Graph_Functions.ppt.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
Logarithmic Functions and Graphs
Logarithmic Functions Section 3-2 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Definition: Logarithmic Function For x  0 and.
Copyright © Cengage Learning. All rights reserved. 6 Inverse Functions.
4.2 Logarithmic Functions
Definition of a Logarithmic Function For x > 0 and b > 0, b≠ 1, y = log b x is equivalent to b y = x The function f (x) = log b x is the logarithmic function.
Exponential and Logarithmic Functions and Equations
MTH55_Lec-47_sec_7-7_Complex_Numbers.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-07_sec_2-3a_Lines_by_Intercepts.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH15_Lec-02_Fa13_sec_1-2_Fcn_Graphs.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
§10.1 Distance MIdPoint Eqns
Licensed Electrical & Mechanical Engineer
Logarithmic Functions. Logarithm = Exponent Very simply, a logarithm is an exponent of ten that will produce the desired number. Y = Log 100 means what.
MTH55_Lec-51_sec_8-3a_Quadratic_Fcn_Graphs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-54_sec_8-5a_PolyNom_InEqual.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
Exponential Functions Section 1. Exponential Function f(x) = a x, a > 0, a ≠ 1 The base is a constant and the exponent is a variable, unlike a power function.
MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
Section 6.3 – Exponential Functions Laws of Exponents If s, t, a, and b are real numbers where a > 0 and b > 0, then: Definition: “a” is a positive real.
MTH55_Lec-37_sec_7-1a_Radical_Expressions.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-59_Fa08_sec_9-2b_Inverse_Fcns.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-43_sec_7-4_Add_Sub_Divide_Radicals.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-62_sec_9-4a_Log_Rules.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-39_sec_7-2a_Rational_Exponents.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-20_sec_5-1_Intro_to_PolyNom_Fcns.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-28_sec_Jb_Graph_Rational_Functions.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
6.3 Logarithmic Functions. Change exponential expression into an equivalent logarithmic expression. Change logarithmic expression into an equivalent.
MTH55_Lec-65_Fa08_sec_9-5b_Logarithmic_Eqns.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-26_sec_5-7_PolyNom_Eqns-n-Apps.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55A_Lec-05_sec_2-2_Fcn_Graphs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-31_sec_6-3_Complex_Rationals.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-55_sec_8-5b_Rational_InEqual.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Inverse, Exponential, and Logarithmic Functions Copyright © 2013, 2009, 2005 Pearson Education,
Logarithms The previous section dealt with exponential functions of the form y = a x for all positive values of a, where a ≠ 1. The horizontal.
Section 5.4 Logarithmic Functions. LOGARITHIMS Since exponential functions are one-to-one, each has an inverse. These exponential functions are called.
MTH55_Lec-34_sec_6-6_Rational_Equations.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical &
4.3 Logarithmic Functions Logarithms Logarithmic Equations
MTH55_Lec-42_sec_7-3b_Factor_Radicals.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-54_sec_8-5a_PolyNom_InEqual.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
MTH55_Lec-40_sec_7-2b_Rational_Exponents.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
MTH55_Lec-45_7-6a_Radical_Equations.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
The Logarithm as Inverse Exponential Function Recall: If y is a one to one function of x, to find the inverse function reverse the x’s and y’s and solve.
MTH55_Lec-02_sec_1-6_Exponent_Rules.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
Copyright © Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions.
(a) (b) (c) (d) Warm Up: Show YOUR work!. Warm Up.
File = MTH55_Lec-04_ec_2-2_Fcn_Algebra.pp 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer
MTH55_Lec-51_sec_8-3a_Quadratic_Fcn_Graphs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
File = MTH55_Lec-04_ec_2-2_Fcn_Algebra.pp 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer
LEQ: How do you evaluate logarithms with a base b? Logarithms to Bases Other Than 10 Sec. 9-7.
4.2 Logarithms. b is the base y is the exponent (can be all real numbers) b CANNOT = 1 b must always be greater than 0 X is the argument – must be > 0.
Copyright © Cengage Learning. All rights reserved. 4.3 Logarithmic Functions.
Logarithmic Functions
§6.3 Complex Rational Fcns
§6.3 Complex Rational Fcns
Licensed Electrical & Mechanical Engineer
Licensed Electrical & Mechanical Engineer
Presentation transcript:

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics §9.3a Logarithms

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 2 Bruce Mayer, PE Chabot College Mathematics Review §  Any QUESTIONS About §9.2 → Inverse Functions  Any QUESTIONS About HomeWork §9.2 → HW MTH 55

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 3 Bruce Mayer, PE Chabot College Mathematics Logarithm → What is it?  Concept: If b > 0 and b ≠ 1, then y = log b x is equivalent to x = b y  Symbolically x = b y y = log b x The exponent is the logarithm. The base is the base of the logarithm.

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 4 Bruce Mayer, PE Chabot College Mathematics Logarithm Illustrated  Consider the exponential function f(x) = 3 x. Like all exponential functions, f is one-to-one. Can a formula for f −1 be found? Use the 4-Step Method f − 1 (x) ≡ the exponent to which we must raise 3 to get x. y = 3 x x = 3 y y ≡ the exponent to which we must raise 3 to get x. 4-Step

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 5 Bruce Mayer, PE Chabot College Mathematics Logarithm Illustrated  Now define a new symbol to replace the words “the exponent to which we must raise 3 to get x”: log 3 x, read “the logarithm, base 3, of x,” or “log, base 3, of x,” means “the exponent to which we raise 3 to get x.”  Thus if f(x) = 3 x, then f −1 (x) = log 3 x. Note that f −1 (9) = log 3 9 = 2, as 2 is the exponent to which we raise 3 to get 9

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 6 Bruce Mayer, PE Chabot College Mathematics Example  Evaluate Logarithms  Evaluate: a) log 3 81 b) log 3 1 c) log 3 (1/9)  Solution: a)Think of log 3 81 as the exponent to which we raise 3 to get 81. The exponent is 4. Thus, since 3 4 = 81, log 3 81 = 4. b)ask: “To what exponent do we raise 3 in order to get 1?” That exponent is 0. So, log 3 1 = 0 c)To what exponent do we raise 3 in order to get 1/9? Since 3 −2 = 1/9 we have log 3 (1/9) = −2

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 7 Bruce Mayer, PE Chabot College Mathematics The Meaning of log a x  For x > 0 and a a positive constant other than 1, log a x is the exponent to which a must be raised in order to get x. Thus, log a x = m means a m = x  or equivalently, log a x is that unique exponent for which

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 8 Bruce Mayer, PE Chabot College Mathematics Example  Exponential to Log  Write each exponential equation in logarithmic form.  Soln

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 9 Bruce Mayer, PE Chabot College Mathematics Example  Log to Exponential  Write each logarithmic equation in exponential form  Soln

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 10 Bruce Mayer, PE Chabot College Mathematics Example  Evaluate Logarithms  Find the value of each of the following logarithms  Solution

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 11 Bruce Mayer, PE Chabot College Mathematics Example  Evaluate Logarithms  Solution (cont.)

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 12 Bruce Mayer, PE Chabot College Mathematics Example  Use Log Definition  Solve each equation for x, y or z  Solution

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 13 Bruce Mayer, PE Chabot College Mathematics Example  Use Log Definition  Solution (cont.)

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 14 Bruce Mayer, PE Chabot College Mathematics Inverse Property of Logarithms  Recall Def: For x > 0, a > 0, and a ≠ 1,  In other words, The logarithmic function is the inverse function of the exponential function; e.g.

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 15 Bruce Mayer, PE Chabot College Mathematics Show Log a a x = x

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 16 Bruce Mayer, PE Chabot College Mathematics Example  Inverse Property  Evaluate:  Solution Remember that log 5 23 is the exponent to which 5 is raised to get 23. Raising 5 to that exponent, obtain

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 17 Bruce Mayer, PE Chabot College Mathematics Basic Properties of Logarithms  For any base a > 0, with a ≠ 1, Discern from the Log Definition 1.Log a a = 1 As 1 is the exponent to which a must be raised to obtain a (a 1 = a) 2.Log a 1 = 0 As 0 is the exponent to which a must be raised to obtain 1 (a 0 = 1)

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 18 Bruce Mayer, PE Chabot College Mathematics Graph Logarithmic Function  Sketch the graph of y = log 3 x  Soln: Make T-Table → xy = log 3 x(x, y) 3 –3 = 1/27–3(1/27, –3) 3 –2 = 1/9–2(1/9, –2) 3 –3 = 1/3–1(1/3, –1) 3 0 = 10(1, 0) 3 1 = 31(3, 1) 3 2 = 92(9, 2)

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 19 Bruce Mayer, PE Chabot College Mathematics Graph Logarithmic Function  Plot the ordered pairs and connect the dots with a smooth curve to obtain the graph of y = log 3 x

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 20 Bruce Mayer, PE Chabot College Mathematics Example  Graph by Inverse  Graph y = f(x) = 3 x  Solution: Use Inverse Relation for Logs & Exponentials  Reflect the graph of y = 3 x in the line y = x to obtain the graph of y = f −1 (x) = log 3 x

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 21 Bruce Mayer, PE Chabot College Mathematics Domain of Logarithmic Fcns  Recall that the Domain of f(x) = a x is (−∞, ∞) Range of f(x) = a x is (0, ∞)  Since the Logarithmic function is the inverse of the Exponential function, Domain of f −1 (x) = log a x is (0, ∞) Range of f −1 (x) = log a x is (−∞, ∞)  Thus, the logarithms of 0 and negative numbers are NOT defined.

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 22 Bruce Mayer, PE Chabot College Mathematics Example  Find Domain  Find the domain of each function.  Solution a. The Domain of a logarithmic function must be positive, that is,  Thus The domain of f is (−∞, 2).

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 23 Bruce Mayer, PE Chabot College Mathematics Example  Find Domain  Find the domain of each function.  Solution b. The Domain of a logarithmic function must be positive, that is,  Need to Avoid Negative-Logs AND Division by Zero

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 24 Bruce Mayer, PE Chabot College Mathematics Example  Find Domain  Soln b. (cont.)  Set numerator = 0 & denominator = 0  Construct a SIGN CHART x − 2 = 0 x + 1 = 0 x = 2 x = −1  The domain of f is (−∞, −1)U(2, ∞).

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 25 Bruce Mayer, PE Chabot College Mathematics Properties of Exponential and Logarithmic Functions Exponential Function f (x) = a x Logarithmic Function f (x) = log a x Domain (0, ∞) Range (–∞, ∞) Domain (–∞, ∞) Range (0, ∞) x-intercept is 1 No y-intercept y-intercept is 1 No x-intercept x-axis (y = 0) is the horizontal asymptote y-axis (x = 0) is the vertical asymptote

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 26 Bruce Mayer, PE Chabot College Mathematics Properties of Exponential and Logarithmic Functions Exponential Function f (x) = a x Logarithmic Function f (x) = log a x Is one-to-one, that is, log a u = log a v if and only if u = v Is one-to-one, that is, a u = a v if and only if u = v Increasing if a > 1 Decreasing if 0 < a < 1

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 27 Bruce Mayer, PE Chabot College Mathematics Graphs of Logarithmic Fcns f (x) = log a x (0 < a < 1)f (x) = log a x (a > 1)

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 28 Bruce Mayer, PE Chabot College Mathematics Graph Logs by Translation  Start with the graph of f(x) = log 3 x and use Translation Transformations to sketch the graph of each function  Also State the DOMAIN and RANGE and the VERTICAL ASYMPTOTE for the graph of each function

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 29 Bruce Mayer, PE Chabot College Mathematics Graph Logs by Translation  Solution Shift UP 2 Domain (0, ∞) Range (−∞, ∞) Vertical asymptote x = 0

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 30 Bruce Mayer, PE Chabot College Mathematics Graph Logs by Translation  Solution Shift RIGHT 1 Domain (1, ∞) Range (−∞, ∞) Vertical asymptote x = 1

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 31 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work  Problems From §9.3 Exercise Set 8, 18, 26, 38, 48  Logs & Exponentials Are Inverse Functions

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 32 Bruce Mayer, PE Chabot College Mathematics All Done for Today Inventor of Logarithms Born: 1550 in Merchiston Castle, Edinburgh, Scotland Died: 4 April 1617 in Edinburgh, Scotland John Napier

MTH55_Lec-60_Fa08_sec_9-3a_Intro-to-Logs.ppt 33 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics Appendix –