© University of Cancun, Mexico1 Chapter 21: Overview of Energy Saving Techniques for Mobile and Wireless Access Networks 1 Diogo Quintas, 1 Oliver Holland,

Slides:



Advertisements
Similar presentations
Remuneration of using Green IT June 18, Agenda Approaches to green computing Drivers for adopting green technologies Progress so ICICI Financial.
Advertisements

Chapter 14: Energy Efficient Next Generation Communications
February 20, Spatio-Temporal Bandwidth Reuse: A Centralized Scheduling Mechanism for Wireless Mesh Networks Mahbub Alam Prof. Choong Seon Hong.
ITRS Roadmap Design + System Drivers Makuhari, December 2007 Worldwide Design ITWG Good morning. Here we present the work that the ITRS Design TWG has.
International Technology Alliance In Network & Information Sciences International Technology Alliance In Network & Information Sciences 1 Interference.
The REMake project: Recycling and resource efficiency in manufacturing Forum on Environmental Goods & Services and Green Business Models Brussels, 15 October.
Long Term Evolution LTE Long Term Evolution LTE Sanjeev Banzal Telecom Regulatory Authority of India Sanjeev Banzal Telecom Regulatory.
Load Management System with Intermittent Power on the Grid Ruth Kemsley CEng MIMechE MIEE Econnect Ventures Ltd.
Chapter 1: Introduction to Scaling Networks
Hardware Impairments in Large-scale MISO Systems
Energy-efficient Task Scheduling in Heterogeneous Environment 2013/10/25.
Tony Naaman Systems Architecture iDirect, USA
© 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Better business outcomes equal better.
Performance Analysis Lab,
VIKAS REDDY BEERAVALLY HETEROGENEOUS NETWORKS. Radio Network Evolution to heterogeneous Todays Networks 2015 Heterogeneous Networks Single Standard Radio.
Home Area Networks …Expect More Mohan Wanchoo Jasmine Systems, Inc.
Presented By- Sayandeep Mitra TH SEMESTER Sensor Networks(CS 704D) Assignment.
Fault Tolerant Routing in Tri-Sector Wireless Cellular Mesh Networks Yasir Drabu and Hassan Peyravi Kent State University Kent, OH
Department of Information Technology – Wireless & Cable Designing Advanced Energy-Efficient Wireless Access Networks by a Capacity Based Deployment Tool.
A Survey on Wireless Mesh Networks Sih-Han Chen 陳思翰 Department of Computer Science and Information Engineering National Taipei University of Technology.
SMART ANTENNAS. Smart Antennas The presentation is divided into the following: Why? What? How?
Low Power Design for Wireless Sensor Networks Aki Happonen.
Overview.  UMTS (Universal Mobile Telecommunication System) the third generation mobile communication systems.
1 Cross-Layer Design for Wireless Communication Networks Ness B. Shroff Center for Wireless Systems and Applications (CWSA) School of Electrical and Computer.
RF Power Amplifiers1 מגיש: יניב מרוז. RF Power Amplifiers2 Introduction  With the explosive growth of RF portable devices and their increasing functional.
August 6, Mobile Computing COE 446 Network Planning Tarek Sheltami KFUPM CCSE COE Principles of.
Green Cellular Networks: A Survey, Some Research Issues and Challenges
Characterizing Energy Efficiency and Deployment Efficiency Relations for Green Architecture Design By Yan Chen, Shunqing Zhang and Shugong Xu Haluk Celebi.
1 Energy Efficient Communication in Wireless Sensor Networks Yingyue Xu 8/14/2015.
International Technology Alliance In Network & Information Sciences International Technology Alliance In Network & Information Sciences 1 Cooperative Wireless.
Advanced Energy Management in Cloud Computing multi data center environments Giuliana Carello, DEI, Politecnico di Milano Danilo.
SMART ANTENNA SYSTEMS IN BWA Submitted by M. Venkateswararao.
Constrained Green Base Station Deployment with Resource Allocation in Wireless Networks 1 Zhongming Zheng, 1 Shibo He, 2 Lin X. Cai, and 1 Xuemin (Sherman)
Lecture 03: Fundamentals of Computer Design - Trends and Performance Kai Bu
1 Optimal Power Allocation and AP Deployment in Green Wireless Cooperative Communications Xiaoxia Zhang Department of Electrical.
Low-Power Wireless Sensor Networks
GreenDelivery: Proactive Content Caching and Push with Energy- Harvesting-based Small Cells IEEE Communications Magazine, 2015 Sheng Zhou, Jie Gong, Zhenyu.
Effects of joint macrocell and residential picocell deployment on the network energy efficiency Holger Claussen Bell Laboratories, UK.
Interference Cancellation as a Mobile Enhancement to Improve Spectral Efficiency IEEE ComSoc Denver Chapter January 16, 2007.
Design of Power Efficient Power Amplifier for 4G User Terminals Presented By Abubakar Sadiq Hussaini, IEEE, IET, OSA, NSE Raed A. A. Alhameed & Jonathan.
Mohamed Hefeeda 1 School of Computing Science Simon Fraser University, Canada Video Streaming over Cooperative Wireless Networks Mohamed Hefeeda (Joint.
1 Heterogeneity in Multi-Hop Wireless Networks Nitin H. Vaidya University of Illinois at Urbana-Champaign © 2003 Vaidya.
IEEE SCC41 PARs Dr. Rashid A. Saeed. 2 SCC41 Standards Project Acceptance Criteria 1. Broad market application  Each SCC41 (P1900 series) standard shall.
Spectrum Management 2002 Marc Goldburg CTO, Internet Products Group ArrayComm, Inc. Adaptive Antennas (or “doing more with less”)
Device-to-Device Communication in Cellular Networks Speaker: Tsung-Han Chiang Date: Feb. 24,
Evaluation Criteria and Traffic Models Update Farooq Khan IEEE Plenary Meeting Orlando, FL, USA March 15-19, 2004.
Advanced Spectrum Management in Multicell OFDMA Networks enabling Cognitive Radio Usage F. Bernardo, J. Pérez-Romero, O. Sallent, R. Agustí Radio Communications.
CROSS-LAYER OPTIMIZATION PRESENTED BY M RAHMAN ID:
Cell Zooming for Cost-Efficient Green Cellular Networks
1 Exploiting Diversity in Wireless Networks Nitin H. Vaidya University of Illinois at Urbana-Champaign Presentation at Mesh.
Network and Systems Laboratory nslab.ee.ntu.edu.tw Branislav Kusy, Christian Richter, Wen Hu, Mikhail Afanasyev, Raja Jurdak, Michael Brunig, David Abbott,
INTRODUCTION. Homogeneous Networks A homogeneous cellular system is a network of base stations in a planned layout and a collection of user terminals,
Vidya Bharathi Institute of Technology
2011 ULTRA Program: Green Radio Prof. Jinho Choi College of Engineering Swansea University, UK.
BOUNDS ON QOS- CONSTRAINED ENERGY SAVINGS IN CELLULAR ACCESS NETWORKS WITH SLEEP MODES - Sushant Bhardwaj.
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [UWB System Design for Low Power, Precision Location.
Intro Wireless vs. wire-based communication –Costs –Mobility Wireless multi hop networks Ad Hoc networking Agenda: –Technology background –Applications.
1 Architecture and Behavioral Model for Future Cognitive Heterogeneous Networks Advisor: Wei-Yeh Chen Student: Long-Chong Hung G. Chen, Y. Zhang, M. Song,
Toward Reliable and Efficient Reporting in Wireless Sensor Networks Authors: Fatma Bouabdallah Nizar Bouabdallah Raouf Boutaba.
WIRELESS COMMUNICATION THE CELLULAR CONCEPT- SYSTEM DESIGN FUNDAMENTALS LECTURE 4 1 Tanvir Ahmad Niazi Air University, Islamabad.
HISTORY OF COMMUNICATION - CONTENT - communication systems overview - Introduction to Cellular Fundamentals - Network Architecture - GSM Air Interface.
Wired and Wireless network management 1. outline 2 Wireless applications Wireless LAN Wireless LAN transmission medium WLAN modes WLAN design consideration.
SMART ANTENNAS SMART ANTENNAS apoorva k. Shetti 2bu09ec006
Communication Protocol Engineering Lab. A Survey Of Converging Solutions For Heterogeneous Mobile IEEE Wireless Communication Magazine December 2014 Minho.
Cost Effectively Deploying of Relay Stations (RS) in IEEE 802
Green cloud computing 2 Cs 595 Lecture 15.
ECE 7930 Advanced Topics in Wireless Networks
Wireless Sensor Networks 5th Lecture
Nortel Corporate Presentation
Green ICT Actions in China
Presentation transcript:

© University of Cancun, Mexico1 Chapter 21: Overview of Energy Saving Techniques for Mobile and Wireless Access Networks 1 Diogo Quintas, 1 Oliver Holland, 1 Hamid Aghvami, and 2 Hanna Bogucka 1Centre for Telecommunications Research, Kings College London 2Poznan University of Technology, Poland HANDBOOK ON GREEN INFORMATION AND COMMUNICATION SYSTEMS

© University of Cancun, Mexico2 Carbon Footprint of Mobile Networks Embodied Energy Energy spent on manufacturing, installation and decommission of equipment Operational Energy Energy spent on the day to day operation of the equipment Operational Energy is the dominant part of the energy consumption… but, As systems become more efficient the Embodied Energy will be dominant Figure 1: Contribution to the carbon footprint of mobile wireless networks [1]

© University of Cancun, Mexico3 Operational Energy There are three main components of energy consumption by access equipment: Power Amplifiers Cooling Baseband Processing Other circuitry The total power consumption has a load and RF power variant part AND a fixed consumption Figure 2: Operational energy consumption breakdown [2]

© University of Cancun, Mexico4 Operational Energy Modeling Linear models scaling with the average RF power consumption and load have been proposed in the literature, modeling a Omni-directional BS* [3]: ParameterTypical Values found in Literature [3-6] PA Efficiency ( ) (Macro BS), (Micro BS) Fixed power ( ) (Macro BS), (Micro BS) Proportional to load ( )Not scalable (Macro BS), ~0.5 (Micro BS) * - The total power typically scales linearly with the number of PAs and sectors

© University of Cancun, Mexico5 Embodied Energy Estimatives for the embodied energy of a base station set the total cost as 75GJ [7] Semiconductor manufacure is the dominant factor in the embodied energy of mobile equipment Figure 3: Embodied energy consumption breackdown [7]

© University of Cancun, Mexico6 Towards a Life Cycle Perspective To evaluate the enviormental impact of a new system design it is critical to have in mind the full life cycles energy consumption Facilitating the comparison between two systems/techniques with different life expectancies (or time frames...) the full life cycles energy consumption must be scaled into an energy cost per unit of time (usually measured in years)

© University of Cancun, Mexico7 Extending the Life Cycle Modular equipment with multiple reusable parts Parts of High end equipment could be reused in lower end equipement after reaching their end of life. Reconfigurable chips New technology could then be deployed by a simple reconfiguration of the chip Recycling valuable raw material In practice this is already done...

© University of Cancun, Mexico8 Improving Hardware Improvements on hardware design are the most effective way of reducing the operational energy consumption Base station equipment consuming just 500W has been released by manufacturers Little understanding of the impact of the new design paradigms in the manufacture phase

© University of Cancun, Mexico9 Power Amplifiers Three promising designs/techniques: Doherty Amplifiers Envelope Tracking Digital Pre-distortion Together these are expected to yield efficiency rates of up to 50% [8] Comercial PAs have been anounced with an efficiency rate of 45%

© University of Cancun, Mexico10 Processors Power consumption of a processor varies quadraticaly with the voltage and linearly with the clock frequency Dynamicaly adaptin the frequency and undervolting the processor leads to significant power savings Multi core arquitechtures allow a fine-grained control off the power consumption

© University of Cancun, Mexico11 Micro Sleep Modes Switch off signaling during some timeslots Power down the processor (under voltage) Switch off the PA (DTX) Ensure that the power consumption scales with the effective load (i.e. the instantaneous load).

© University of Cancun, Mexico12 Whole System Design Component level efficiency improvements can only reduce the operational power costs There are fundamental limits to achievable efficiency gains by better designs They do little to improve the Energy Consumption/Capacity trade off The whole system has to be taken into consideration Network dimensioning Alternative networking paradigms Spectrum management

© University of Cancun, Mexico13 Green Radio Interface Theoretical capacity of current modulation schemes are pushing us closer to the Shannon bound. As the bound is approached the number of base stations to provide capacity is reduced... However, these new techniques require complex DSP, increasing both the embodied and operational energy of processors. Simpler techniques are needed that still achieve capacity...

© University of Cancun, Mexico14 System Dimensioning Smaller cells tend to consume less RF power - however more base stations are needed to cover the same area The fixed energy costs increase linearly with the number of access routers For smaller micro base stations the embodied starts to dominate the Life Cycle consumption Figure 8: Energy consumption per year to cover a 20 sq km area, with and without embodied energy

© University of Cancun, Mexico15 Multi Hop Networks Multi hop networking can effect a reduction by: Increasing the capacity density of the network Decreasing the RF power levels in the network However, relays can be inthemselves power hungry The embodied energy of relays could be a problem.

© University of Cancun, Mexico16 Relay Aided Networks The operational power consumption can be reduced up to a factor of 10 depending on the required capacity density Extrapolating from an economic analysis, if relays have an life cycle cost of less than 6% of a base station then energy is saved Relay switch off paterns can further reduce the life cycle costs of these networks.

© University of Cancun, Mexico17 Mobile Ad-Hoc Networks Delay tolerant applications can use Mobile Ad- Hoc networks Traffic can be shifted from the access network to the Ad-Hoc network, reducing the capacity density required Effects on the energy efficiency are highly dependent on the spatial and temporal characteristics of delay tolerant traffic...

© University of Cancun, Mexico18 Dynamic Spectrum Management Utilizing the available spectrum bands in a more intellegent way can reduce energy consumption by: Moving users or traffic from one band to another switching off all radio equipment in one of the bands Adjusting sectorisation patterns allowing the switching off of some sectors Moving users or traffic between bands to allow subsets of cells to be switched off Enabling the switching off radio equipment in single band scenarios

© University of Cancun, Mexico19 Alternative Source of Energy Grid access is an increasingly important issue as mobile networks grow in emerging markets On-site generation has to be used, bypassing the need for a grid (and associated losses...) Coupled with an effective reduction of the power consumption of access networks, renewable energy is an option to reduce the carbon footprint

© University of Cancun, Mexico20 Suitability Of Wind and Solar Power Macro sites have more space to deploy power generating equipment BUT... consume much more power. Figure : Energy availability throughout the year in London, United Kingdom. Data from Energy yields from renewable source can be volatile, with clear seasonal patterns

© University of Cancun, Mexico21 Conclusion There are several techniques that can improve the access networks energy efficiency spanning several design dimensions: Component level energy efficient design Network planning Spectrum management Renewable energy Little research has been done from a life cycle prespective – recent energy efficient research has been focusing on the operational energy reduction There is a risk of shifting the energy consumption of the operational phase to the manufacture phase.

© University of Cancun, Mexico22 Selected References [1] T. Edler, Green base stations how to minimize co2 emission in operator networks. in Next Generation Networks and Base stations Conference, Bath, UK, [2] H. Karl, An overview of energy-efficiency techniques for mobile communication System, TU Berlin, Tech. Rep., [3] O. Arnold, F. Richter, G. Fettweis, and O. Blume, Power consumption modeling of different base station types in heterogeneous cellular networks, in Future Network and Mobile Summit 2010 [4] M. Deruyck, E. Tanghe, W. Joseph, and L. Martens, Modelling and optimization of power consumption in wireless access networks, Comp Comms, In Press, Corrected Proof, [5] W. Guo and T. OFarrell, Green cellular network: Deployment solutions, sensitivity and tradeoffs, in WiAd 2011, Jun [6] L. Saker and S. Elayoubi, Sleep mode implementation issues in green base stations, in PIMRC 2010, sept. 2010, pp –1688. [7] I. Humar, X. Ge, L. Xiang, M. Jo, M. Chen, and J. Zhang, Rethinking energy efficiency models of cellular networks with embodied energy, Network, IEEE, vol. 25, no. 2, pp. 40 –49, march-april [8] L. Correia, D. Zeller, O. Blume, D. Ferling, Y. Jading, I. Go anddor, G. Auer, and L. Van Der Perre,Challenges and enabling technologies for energy aware mobile radio networks, Comm Mag, IEEE, vol. 48, no. 11, pp. 66 –72, november 2010.

© University of Cancun, Mexico23 Thanks for your attention!