FPCP 2003 K. Honscheid Ohio State The BTeV Experiment: Physics and Detector FPCP 2003 K. Honscheid Ohio State University More details can be found at www-physics.mps.ohio-state.edu/~klaus/research/cipanp.pdf.

Slides:



Advertisements
Similar presentations
Guoming CHEN The Capability of CMS Detector Chen Guoming IHEP, CAS , Beijing.
Advertisements

PHENIX Decadal Plan o Midterm upgrades until 2015 o Long term evolution after 2015 Dynamical origins of spin- dependent interactions New probes of longitudinal.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
FPCP 2002, 05/16-18/2002 p. 1 Richard E. Hughes, The Ohio State UniversityCDF Run II Status Status of CDF and Prospects Flavor Physics and CP Violation.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
The new Silicon detector at RunIIb Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Michele Gallinaro, "QCD Results at CDF" - XXXVIII Rencontres de Moriond, March 22-29, QCD Results at CDF Inclusive Jet Cross Section Dijet Mass.
The Design of MINER  A Howard Budd University of Rochester August, 2004.
Description of BTeV detector Jianchun Wang Syracuse University Representing The BTeV Collaboration DPF 2000 Aug , 2000 Columbus, Ohio.
ALICE EMCal Physics and Functional Requirements Overview.
Aurelio Bay Institut de Physique des Hautes Energies July 13-25, 2000, Hanoi, Vietnam.
The CMS Muon Detector Thomas Hebbeker Aachen July 2001 Searching for New Physics with High Energy Muons.
P Spring 2003 L14Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
The BTeV Tracking Systems David Christian Fermilab f January 11, 2001.
Workshop on Quarkonium, November 8-10, 2002 at CERN Heriberto Castilla DØ at Run IIa as the new B-Physics/charmonium player Heriberto Castilla Cinvestav-IPN.
EPS 2003, July 19, 2003David Buchholz, Northwestern University Performance of the D0 Experiment in Run II Detector Commissioning and Performance Accelerator,
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
Measurement of CP violation with the LHCb experiment at CERN
Nick Hadley Run II Physics (I) Nick Hadley The University of Maryland New Perspectives 2000 Fermilab - June 28, 2000.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
HFT + TOF: Heavy Flavor Physics Yifei Zhang University of Science & Technology of China Lawrence Berkeley National Lab TOF Workshop, Hangzhou, April,
1 Performance of the LHCb VELO Outline LHCb Detector and its performance in Run I LHCb Detector and its performance in Run I LHCb VELO LHCb VELO VELO performance.
Physics Performance of LHC-B Neville Harnew University of Oxford Beauty-97, Los Angeles October Outline Introduction The LHC-B Experiment New.
CIPANP2003 K. Honscheid Ohio State The Future of Flavor Physics at Hadron Colliders CIPANP 2003 K. Honscheid Ohio State University.
June 28, 2002BEACH2002 B Physics at the Tevatron B Physics at the Tevatron Jack Cranshaw Texas Tech University For the CDF and D0 Collaborations.
1 Perspectives for quarkonium production in CMS Carlos Lourenço, on behalf of CMSQWG 2008, Nara, Japan, December 2008.
QCD 与强子物理研讨会, 2010 年 8 月 4 - 10 日,威海 Prospects of Flavor Physics at the LHC 高原宁 清华大学高能物理研究中心 2010/8/61Y. Gao, Prospects of flavor physics at the LHC.
Higgs Properties Measurement based on HZZ*4l with ATLAS
B c mass, lifetime and BR’s at CDF Masato Aoki University of Tsukuba For the CDF Collaboration International Workshop on Heavy Quarkonium BNL.
DIS 2004, Strbske Pleso,April LHCb experiment sensitivity to CKM phases and New Physics from mixing and CP violation measurements in B decays LHCb.
The BTeV Project at Fermilab Talk to DOE/Fermi Group Jan. 11, 2001 Introduction – Joel Butler Tracking detectors – David Christian Particle Identification.
P ARTICLE D ETECTORS Mojtaba Mohammadi IPM-CMPP- February
1 Highlights from Belle Jolanta Brodzicka (NO1, Department of Leptonic Interactions) SAB 2009.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
Study of exclusive radiative B decays with LHCb Galina Pakhlova, (ITEP, Moscow) for LHCb collaboration Advanced Study Institute “Physics at LHC”, LHC Praha-2003,
Charm Physics Potential at BESIII Kanglin He Jan. 2004, Beijing
26 June 2006Imaging2006, Stockholm, Niels Tuning 1/18 Tracking with the LHCb Spectrometer Detector Performance and Track Reconstruction Niels Tuning (Outer.
The RICH Detectors of the LHCb Experiment Carmelo D’Ambrosio (CERN) on behalf of the LHCb RICH Collaboration LHCb RICH1 and RICH2 The photon detector:
Single Top Quark Production Mark Palenik Physics 564, Fall 2007.
Alternatives: Beyond SUSY Searches in CMS Dimitri Bourilkov University of Florida For the CMS Collaboration SUSY06, June 2006, Irvine, CA, USA.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
M. Garcia-Sciveres July 2002 ATLAS A Proton Collider Detector M. Garcia-Sciveres Lawrence Berkeley National Laboratory.
Abstract Several models of elementary particle physics beyond the Standard Model, predict the existence of neutral particles that can decay in jets of.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #9.
TeV muons: from data handling to new physics phenomena Vladimir Palichik JINR, Dubna NEC’2009 Varna, September 07-14, 2009.
DØ Beauty Physics in Run II Rick Jesik Imperial College BEACH 2002 V International Conference on Hyperons, Charm and Beauty Hadrons Vancouver, BC, June.
P Spring 2002 L16Richard Kass B mesons and CP violation CP violation has recently ( ) been observed in the decay of mesons containing a b-quark.
23/02/07G. Vidal-Sitjes, VCI2007 Vienna Conference on Instrumentation1 The LHCb RICH detector G. Vidal-Sitjes on behalf of the LHCb RICH team Outline:
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Searches for Resonances in dilepton final states Searches for Resonances in dilepton final states PANIC th -14 th November 2008, Eilat, ISRAEL A.
The BTeV Pixel Detector and Trigger System Simon Kwan Fermilab P.O. Box 500, Batavia, IL 60510, USA BEACH2002, June 29, 2002 Vancouver, Canada.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Open and Hidden Beauty Production in 920 GeV p-N interactions Presented by Mauro Villa for the Hera-B collaboration 2002/3 data taking:
K + → p + nn The NA62 liquid krypton electromagnetic calorimeter Level 0 trigger V. Bonaiuto (a), A. Fucci (b), G. Paoluzzi (b), A. Salamon (b), G. Salina.
The New CHOD detector for the NA62 experiment at CERN S
IOP HEPP Conference Upgrading the CMS Tracker for SLHC Mark Pesaresi Imperial College, London.
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
The Compact Muon Solenoid Detector
The LHC collider in Geneva
BTeV Physics Reach LHC 2003 Symposium K. Honscheid
LHCb Particle Identification and Performance
8th International Conference on Advanced Technology and
B Physics at the LHC Neville Harnew University of Oxford.
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
Top quark production cross section Top quark mass measurement
How can we study the magnetic distortion effect?
Presentation transcript:

FPCP 2003 K. Honscheid Ohio State The BTeV Experiment: Physics and Detector FPCP 2003 K. Honscheid Ohio State University More details can be found at www-physics.mps.ohio-state.edu/~klaus/research/cipanp.pdf and the BTeV web site at fnal.gov

FPCP 2003 K. Honscheid Ohio State B Physics Today CKM Picture okay CP Violation observed No conflict with SM V ud V us V ub V CKM =V cd V cs V cb V td V ts V tb sin(2  ) = / >10 11 b hadrons (including B s )

FPCP 2003 K. Honscheid Ohio State B Physics at Hadron Colliders Energy2 TeV14 TeV b cross section ~100  b~500  b c cross section ~1000  b~3500  b b fraction2x x10 -3 Inst. Luminosity2x10 32 >2x10 32 Bunch spacing132 ns (396 ns)25 ns Int./crossing ( ) Luminous region 30 cm5.3 cm TevatronLHC Large cross sections Triggering is an issue All b-hadrons produced (B, B s, B c, b-baryons)

FPCP 2003 K. Honscheid Ohio State Detector Requirements From F. Teubert Trigger, trigger, trigger Vertex, decay distance Momentum PID Neutrals ( ,  0 )

FPCP 2003 K. Honscheid Ohio State Forward vs. Central Geometry b production angle  230  b 100  b Multi-purpose experiments require large solid angle coverage. Central Geometry (CDF, D0, Atlas, CMS) Dedicated B experiments can take advantage of Forward geometry (BTeV, LHCb)

FPCP 2003 K. Honscheid Ohio State The BTeV Detector Beam Line

FPCP 2003 K. Honscheid Ohio State Pixel Vertex Detector Reasons for Pixel Detector: Superior signal to noise Excellent spatial resolution microns depending on angle, etc Very Low occupancy Very fast Radiation hard Special features: It is used directly in the L1 trigger Pulse height is measured on every channel with a 3 bit FADC It is inside a dipole and gives a crude standalone momentum Doublet

FPCP 2003 K. Honscheid Ohio State The Pixel Detector II Vacuum System

FPCP 2003 K. Honscheid Ohio State Simulated B Bbar, Pixel Vertex Detector

FPCP 2003 K. Honscheid Ohio State Level 1 vertex trigger architecture FPGA segment trackers Merge Trigger decision to Global Level 1 Switch: sort by crossing number track/vertex farm (~2500 processors) 30 station pixel detector

FPCP 2003 K. Honscheid Ohio State Generate Level-1 accept if “detached” tracks in the BTeV pixel detector satisfy: (GeV/c) 2 cm L1 vertex trigger algorithm

FPCP 2003 K. Honscheid Ohio State Efficiencies and Tagging For a requirement of at least 2 tracks detached by more than 6 , we trigger on only 1% of the beam crossings and achieve the following trigger efficiencies for these states ( int. per crossing): Decay efficiency(%) Decay efficiency(%) B   +  - 63 B o  K +  - 63 B s  D s K 74 B o  J/  K s 50 B -  D o K - 70 B s  J/  K * 68 B -  K s  - 27 B o  K *  74% 1% Impact Parameter in units of  Trigger Efficiency-Minimum Bias Events Trigger EfficiencyB s  D s K EFFICIENCYEFFICIENCY EFFICIENCYEFFICIENCY N=1 N=2 N=3 N=4 N=1 N=2 N=3 N=4

FPCP 2003 K. Honscheid Ohio State The Physics Goals There is New Physics out there: Baryon Asymmetry of Universe & by Dark Matter Hierarchy problem Plethora of fundamental parameters … B Experiments at Hadron Colliders are well positioned to: Perform precision measurements of CKM Elements with small model dependence. Search for New Physics via CP phases Search for New Physics via Rare Decays Help interpret new results found elsewhere (LHC, neutrinos) Complete a broad program in heavy flavor physics Weak decay processes, B ’s, polarization, Dalitz plots, QCD… Semileptonic decays including  b b & c quark Production Structure: B(s) spetroscopy, b-baryon states B c decays

FPCP 2003 K. Honscheid Ohio State Importance of Particle Identification BTeV RICH Detector Gas Liquid

FPCP 2003 K. Honscheid Ohio State Measuring   Using B o         A Dalitz Plot analysis gives both sin(2  ) and cos(2  ) ( Snyder & Quinn) Measured branching ratios are: B (B       = ~10 -5 B (B      +      = ~3x10 -5 B (B       <0.5x10 -5 Snyder & Quinn showed that tagged events are sufficient Not easy to measure  0 reconstruction Not easy to analyze 9 parameter likelihood fit Slow  0 ’s Nearly empty (  polarization) Dalitz Plot for B o 

FPCP 2003 K. Honscheid Ohio State Yields for B o  Based 9.9x10 6 background events B o  +  events, S/B = 4.1 B o  o  o 780 events, S/B = 0.3   oo Background Signal m B (GeV) BoooBooo

FPCP 2003 K. Honscheid Ohio State Our Estimate of Accuracy on  Geant simulation of B o  (for 1.4x10 7 s) Example: 1000 B o  signal + backgrounds With input  =77.3 o minimum  2 non-resonant non-  bkgrd resonant non-  bkgrd  (gen) R res R non  (recon)  77.3 o o 1.6 o 77.3 o o 1.8 o 93.0 o o 1.9 o 93.0 o o 2.1 o o o 3.9 o o o 4.3 o

FPCP 2003 K. Honscheid Ohio State Electromagnetic Calorimeter The main challenges include Can the detector survive the high radiation environment ? Can the detector handle the rate and occupancy ? Can the detector achieve adequate angle and energy resolution ? BTeV will have a high resolution PbWO 4 calorimeter Developed by CMS for use at the LHC Large granularity Block size 2.7 x 2.7 x 22 cm 3 (25 X o ) ~11000 crystals Photomultiplier readout (no magnetic field) Pre-amp based on QIE chip (KTeV) Energy resolution Stochastic term 1.8% Constant term 0.55% Position resolution

FPCP 2003 K. Honscheid Ohio State Electromagnetic Calorimeter Tests Block from China’s Shanghai Institute Resolution (energy and position) close to expectations This system can achieve CLEO/BaBar/BELLE-like performance in a hadron Collider environment!

FPCP 2003 K. Honscheid Ohio State Rare b Decays Search for New Physics in Loop diagrams New fermion like objects in addition to t, c or u New Gauge-like objects in addition to W, Z or g Inclusive Rare Decays including b  s  b  d  b  s +  Exclusive Rare Decays such as B    B  K* +  Dalitz plot & polarization   + - B o  K* 

FPCP 2003 K. Honscheid Ohio State BTeV data compared to Burdman et al calculation Dilepton invariant mass distributions, forward-backward asymmetry discriminate among the SM and various supersymmetric theories. (Ali, Lunghi, Greub & Hiller, hep-ph/ ) One year for K* + -, enough to determine if New Physics is present Polarization in B o  K* o  +  - Ali et. al, hep-ph/

FPCP 2003 K. Honscheid Ohio State Muon System track from IP toroid(s) / iron ~3 m 2.4 m half height Provides Muon ID and Trigger Trigger for interesting physics states Check/debug pixel trigger fine-grained tracking + toroid Stand-alone mom./mass trig. Momentum “confirmation” Basic building block: Proportional tube “Planks”

FPCP 2003 K. Honscheid Ohio State Summary Heavy quark physics at hadron colliders provides a unique opportunity to measure fundamental parameters of the Standard Model with no or only small model dependence discover new physics in CP violating amplitudes or rare decays. interpret new phenomena found elsewhere (e.g. LHC) Some scenarios are clear others will be a surprise This program requires a general purpose detector like BTeV with an efficient, unbiased trigger and a high performance DAQ a superb charged particle tracking system good particle identification excellent photon detection

FPCP 2003 K. Honscheid Ohio State Additional Transparencies

FPCP 2003 K. Honscheid Ohio State Physics Reach (CKM) in 10 7 s Reaction B (B) (x10 -6 ) # of Events S/B Parameter Error or (Value) B s  D s K  -  8 o B s  D s  ,000 3 x s (75) B o  J/  K S J/  +  , sin(2  ) B o  J/  K o, K o    cos(2  ) ~0.5 B -  D o (K +  - ) K B -  D o (K + K - ) K ,000>10  13 o B s  J/  330 2, B s  J/  670 9, sin(2  Bo+-Bo+- 28 5, BoooBooo  ~4 o Reaction B (B) (x10 -6 ) # of Events S/B Parameter Error B-KS -B-KS  ,600 1 <4 o + BoK+-BoK+ ,  Theory err. Bo+-Bo+ ,600 3Asymmetry B o  K + K , Asymmetry 0.020

FPCP 2003 K. Honscheid Ohio State A simplified trigger comparison From U. Egede

FPCP 2003 K. Honscheid Ohio State Unitarity Triangles B d 0     B d 0    B d 0  DK *0 B S 0  D S K B d 0  D*  B S 0  D S  B d 0  J/  K S 0 B S 0  J/  From N. Harnew 

FPCP 2003 K. Honscheid Ohio State Pixel Test Beam Results Track angle (mr) No change after 33 Mrad (10 years, worst case, BTeV) Analog output of pixel amplifier before and after 33 Mrad irradiation  CMOS design verified radiation hard with both  and protons.

FPCP 2003 K. Honscheid Ohio State Forward Tracker Predicted performance - Momentum resolution is better than 1% over full momentum and angle range Prototype Straw tracker being constructed for FNAL beam test summer/fall 2002 Drawing Of forward Microstrip tracker

FPCP 2003 K. Honscheid Ohio State HPD Schematic for BTeV RICH HPD Tube HPD Pixel array HPD Pinout Pulse Height from 163 pixel prototype HPD. Note pedestal, 1, 2, 3 pe peaks

FPCP 2003 K. Honscheid Ohio State Prop Tube Planks 3/8” diameter Stainless steel tubes (0.01” walls) “picket fence” design 30  (diameter) gold-plated tungsten wire Manifolds are brass soldered to tubes (RF sheilding important!) Front-end electronics: use Penn ASDQ chips, modified CDF COT card Try “D0 fast gas” 88% Ar - 10% CF 4 - CO 2 or 50% Ar – 50% Eth. Basic Building Block: Proportional Tube “Planks”

FPCP 2003 K. Honscheid Ohio State Plank Cosmic Ray Tests Cosmic Ray Test Stand

FPCP 2003 K. Honscheid Ohio State BTeV Data Acquisition Architecture 800 GB/s7.6 MHz L1 rate reduction: ~1/100 L2/3 rate reduction: ~1/20 4 KHz 200 MB/s

FPCP 2003 K. Honscheid Ohio State PbWO 4 Calorimeter Properties Property Value Density(gm/cm 2 ) 8.28 Radiation Length(cm) 0.89 Interaction Length(cm) 22.4 Light Decay time(ns) 5(39%) (3components) 15(60%) 100(1%) Refractive index 2.30 Max of light emission 440nm Temperature Coefficient (%/ o C) -2 Light output/Na(Tl)(%) 1.3 Light output(pe/MeV) into 2” PMT 10 Property Value Transverse block size 2.7cm X 2.7 cm Block Length 22 cm Radiation Length 25 Front end Electronics PMT Inner dimension +/-9.8cm (X,Y) Energy Resolution: Stochastic term 1.8% (2.3%) Constant term 0.55% Spatial Resolution: Outer Radius 140 cm--215 cm $ driven Total Blocks/arm 11,500