Some Igor Schegolev and Chernokolovka Recollections: Igor visited Gor’kov at the NHMFL in the early 90’s: Learned about “Igor” software.  -(BEDT-TTF)

Slides:



Advertisements
Similar presentations
Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
1 S. Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia S. Charfi-Kaddour LPMC, Faculté des Sciences de Tunis, Tunisia M. Héritier.
SDW Induced Charge Stripe Structure in FeTe
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Interacting charge and spin chains in high magnetic fields James S. Brooks, Florida State University, DMR [1] D. Graf et al., High Magnetic Field.
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Superconductivity in Zigzag CuO Chains
Prelude: Quantum phase transitions in correlated metals SC NFL.
Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
Magnetocapacitive effect in SDW system (TMTSF) 2 AsF 6 D. Starešinić, D. Dominko, K. Biljaković Institute of Physics, Zagreb, Croatia P. Lunkenheimer,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Hidden Reentrant and Larkin-Ovchinnikov- Fulde-Ferrell Phase in a Magnetic Filed in (TMTSF) 2 ClO 4 ECRYS (August 17 th 2011) Andrei G. Lebed Department.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Superconductivity Characterized by- critical temperature T c - sudden loss of electrical resistance - expulsion of magnetic fields (Meissner Effect) Type.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Antiferomagnetism and triplet superconductivity in Bechgaard salts
A. Sinchenko, National Research Nuclear University MEPhI, Moscow
Very one dimensional organic conductors – Less is more J. S. B, M. Almeida, L.L. Lumata, P. Kuhns, A. Reyes, D. Graf, R. Henriques, L. Prettner (Green),
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Huiqiu Yuan Department of Physics, Zhejiang University, CHINA Field-induced Fermi surface reconstruction near the magnetic quantum critical point in CeRhIn.
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Electronic instabilities Electron phonon BCS superconductor Localization in 1D - CDW Electron-electron (  ve exchange)d-wave superconductor Localization.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Crystal structure, T-P phase diagram and magnetotransport properties of new organic metal Crystal structure, T-P phase diagram and magnetotransport properties.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Suppression of charge ordering across the spin- Peierls transition in TMTTF based Q1D material Shigeki Fujiyama Inst. for Molecular Science (Dept. of Applied.
Confinement of spin diffusion to single molecular layers in layered organic conductor crystals András Jánossy 1 Ágnes Antal 1 Titusz Fehér 1 Richard Gaál.
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
EPR OF QUASIPARTICLES BY FLUCTUATIONS OF COOPER PAIRS Jan Stankowski Institute of Molecular Physics, Polish Academy of Sciences Kazimierz Dolny 2005.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
J.P. Eisenstein, Caltech, DMR If it were not for the Coulomb repulsion between electrons, iron would not be ferromagnetic. It would instead be.
Emergent Nematic State in Iron-based Superconductors
Glassy dynamics near the two-dimensional metal-insulator transition Acknowledgments: NSF grants DMR , DMR ; IBM, NHMFL; V. Dobrosavljević,
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Nuclear magnetic resonance study of organic metals Russell W. Giannetta, University of Illinois at Urbana-Champaign, DMR Our lab uses nuclear magnetic.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Magnetism of the regular and excess iron in Fe1+xTe
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in Quasi-two-dimensional Frustrated Magnet M. A.
Igor Lukyanchuk Amiens University
Muons in condensed matter research Tom Lancaster Durham University, UK.
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Magnetic field induced charge-density-wave transitions: the role of orbital and Pauli effects Mark Kartsovnik Walther-Meißner-Institut, BADW, Garching,
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
Magnetic Properties of Coordination Compounds
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Emergence of superconductivity in the canonical heavy-electron metal YbRh2Si2 by Erwin Schuberth, Marc Tippmann, Lucia Steinke, Stefan Lausberg, Alexander.
Presentation transcript:

Some Igor Schegolev and Chernokolovka Recollections: Igor visited Gor’kov at the NHMFL in the early 90’s: Learned about “Igor” software.  -(BEDT-TTF) 2 TlHg(SCN) 4 first material measured at the NHMFL. 20 T at 50 mK*. Some major Chernokolovka physics advances: –FS reconstruction in  -(ET) 2 MHg(SCN) 4 –AMRO and its interpretation Due to: Kartsovnik, Kovalev, Shibaeva, Rozenberg, Schegolev, Kushch, Laukhin, Pesotskii, Yakovenko, et al. *Brooks,…Kartsovnick M V, Schegolev A I, et al Physica B

Selected Paradigm Materials (TMTSF) 2 ClO 4 -(BEDT-TSeF) 2 FeCl 4 S = 5/2 Per 2 [Au(mnt) 2 ] CDW + Pressure: AMRO & SC Per 2 [Pt(mnt) 2 ] (S = ½) Spin Peierls + CDW + Field Phase diagram: NMR & Transport FISDW phase diagram: NMR vs. Transport Mysterious MI-AF transition: Mössbauer studies  -(BETS) 2 Fe x Ga 1-x Cl 4-y Br y “alloy studies”

(Osada et al. - first high field phase diagram, B th, B 1, B 2 ) I.

Chung 2000 McKernan 1995 Uji Se NMR? Lumata 2008 Is High field T-B phase diagram of (TMTSF) 2 ClO 4 time dependent? Yu 1990 T(K) H(T) Naughton1988 H(T) T(K)

L. Lumata – simultaneous 77 Se NMR and magnetotransport in (TMTSF) 2 ClO4. Two modes: 1) Fixed angle, change frequency/field 2) Rotation (  ) in b-c plane, fix frequency, change B perp = Bcos(  ) a c b B Measure: Spectrum, 1/T 1, and enhancement factor  “Metallic pulse”: 12 1 ns pulse width “SDW pulse”: to 50 ns pulse width  V. Mitrovic, Takigawa et al. * 0.21 mm dia. NMR coil

T = 1.5 K: peak in 1/T 1 occurs at B 1. B1B1 B th B//c, field (frequency) dependent data. Metallic pulses

“Simultaneous” Resistance and 1/T 1 measurements. Sub-phase boundary clearly shows a change in the nesting condition.

“Simultaneous” Resistance,1/T 1, and enhancement factor vs. rotation at 14 T. Takahashi et al. B th B1B1 B1B1 B1B1 Works because FISDW is primarily orbital.

Rotation data at 30 T. B th B1B1 B* B RE

Main results: 1/T 1 does not peak at the resistive Metal-FISDW transition, but inside the FISDW phase. (Hebel- Slichter like? Theory needed.) “Primitive model”, McKernan et al. SSC 145, 385(2008) appears relevant at “B re ”. Sub-phases clearly seen in NMR. Improved nesting model for all phase transitions needed. Q1Q1 L. L. Lumata: Phys. Rev. B 78, (R)(2008). J. Physics: Conf. Series 132, (2008).

57 Fe Mossbauer in -BETS 2 FeCl 4 Ga: no magnetic order, superconductivity Fe: AF magnetic order, M-I transition Conventional wisdom: d-electron (Fe 3+, S = 5/2) states drive the AF-MI transition II.

Interplay of  and d electron spins is a complex problem. M: Akutsu et al.  Kobayashi et al. Uji Global Phase Diagram: Tuning internal field H J from 0 to 32 T with X: -(BETS) 2 Fe x Ga x-1 Cl 4 B sf via  Sasaki et al. Tokumoto et al. Some  -d phenomena in -(BETS) 2 FeCl 4 EPR – Rutel, Oshima, et al. H//c Also, magnetoresistance, etc. T MI-AF = 8.3 K

H  -d ~ 4 T. S=5/2 spectrum produces a Schottky C P below T N. “ ’’

Strategy: look at the Fe 3+ sites directly using Mössbauer spectroscopy Lisbon: 99% 57 Fe enriched TEAFeCl 4 –S. Rabaça Tokyo: Electrochemical crystallization of -(BETS) 2 FeCl 4 –B. Zhou Lisbon: constant-acceleration spectrometer and a 25 mCi 57 Co source in a Rh matrix –J. C. Waerenborgh

~ 0 57 Fe Mossbauer in -BETS 2 FeCl 4  0 1 & 2 1 & 2 Single Below T MI, we find two sextets corresponding to M s =  5/2 with slightly different B hf values. The sextets merge below 3 K.

Assume the Fe 3+ spin is in the presence of finite H p-d and that the relaxation is relatively fast. The hyperfine field is: Assume spin wave theory (with linear dispersion for AF order) describes the T-dependence of H  -d :

Experimental and computed hyperfine field B hf and derived H  -d field. Waerenborgh et al. arXiv: (PRB-submitted)

Main results of Mössbauer measurements: 1.Paramagnetic state above T MI 2.Abrupt onset of B hf below T MI. 3.Also paramagnetic below T MI, but now H  -d is finite. 4.B hf is temperature dependent, predicts that H  -d is also temperature dependent, and reasonably described by AF spin-wave theory. 5.Two Fe sites with different B hf values, with intensity ratio 2:1. Merge below 3 K. Q vector change? Mössbauer and C P appear to agree that Fe 3+ spins do not have long range AF order below T MI, even though the  -spin system does. A probe of the spin dynamics, field-dependent C p, and Mössbauer studies would be useful. Also: Theory.

A brief look at  -(BETS) 2 Fe x Ga 1-x Cl 4-y Br y Results from SdH: Disorder for x  0,1 and/or y  0,4 (T D ) Effective mass (F  ) correlated with M-X bond length? Radical change in FS for  -(BETS) 2 FeCl 2 Br 2 T D ~ 0.5 KT D ~ 3.5 K III.

 -(BETS) 2 GaBr 4  -(BETS) 2 FeCl 2 Br 2 F  = 948 T; T D = 0.55 K F  = 4616 T F  = 80 to 120 T F  = 260 T; T D = 3.5 K Different FS No negative MR. E. Steven et al., ISCOM Physica B, to be published.

Recent Progress in the Per 2 [M(mnt) 2 ] compounds “Lebed’ resonance” and orbital signatures in AMRO studies Per 2 [Au(mnt) 2 ] Pressure induced CDW-to-SC transition in Per 2 [Au(mnt) 2 ] 195 Pt NMR study of SP and CDW behavior in Per 2 [Pt(mnt) 2 ] in high fields. (work still in progress!) IV.

EPL 85 No 2 (January 2009) Slow cooling rate under pressure is very important! CDW-SC Proximity: ???????????????????? J. Merino and R. H. McKenzie, Superconductivity Mediated by Charge Fluctuations in Layered Molecular Crystals, PRL 87, (2001). SDW-SC: T. Vuletic et al., Coexistence of superconductivity and spin density wave orderings in the organic superconductor (TMTSF) 2 PF 6, Eur. Phys. J. B 25, 319 (2002). IVa.

CDW? High Field (> 18 T) & High Pressure (~ 5 bar) reveal FS topology Orbital: QI type oscillations. Geometrical: a-c plane commensurate effects. Per 2 [Au(mnt) 2 ] IVb.

Orbital effects: Magnetic field dependent Two families due to two extremal area planes in the Fermi Surface Geometrical effects: Magnetic field independent Related to crystallographic directions where the transfer integral paths are strongest. Next step: Lebed magic angle effects? Metal, NFL, Nernst, etc. Main Results:

Interaction of Peierls and Spin Peierls transitions in Per 2 [Pt(mnt) 2 ]  T CDW /T CDW (0) ~ -  (  B B/k B T CDW (0)) 2  T SP /T SP (0) ~ -0  44(  B B/k B T SP (0))  2(  B B/k B T SP (0)) 4 How and when does magnetic field break the Peierls (1/4 filled) and Spin Peierls (1/2 filled) ground states in the parallel chain system? IVc.

Graf et al., PRL. A.G. Lebed and Si Wu, PRL 99, (2007) T(K) Pt Breaking the Peierls and Spin Peierls states in Per 2 [Pt(mnt) 2 ] with high magnetic field. Strategy: follow the 195 Pt NMR signal with field and temperature, and compare it with the transport data. But, could the Pt chains be involved?

T(K) Pt Main Result So Far: The NMR signal vanishes when the CDW-Metal Phase Boundary Is Approached. Possible that SP is not broken until the CDW phase boundary is reached.

Cпасибо!