Hardness of Reconstructing Multivariate Polynomials. Parikshit Gopalan U. Washington Parikshit Gopalan U. Washington Subhash Khot NYU/Gatech Rishi Saket.

Slides:



Advertisements
Similar presentations
Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes Kenji Obata.
Advertisements

Agnostically Learning Decision Trees Parikshit Gopalan MSR-Silicon Valley, IITB00. Adam Tauman Kalai MSR-New England Adam R. Klivans UT Austin
Parikshit Gopalan Georgia Institute of Technology Atlanta, Georgia, USA.
Computing with Polynomials over Composites Parikshit Gopalan Algorithms, Combinatorics & Optimization. Georgia Tech.
Hardness Amplification within NP against Deterministic Algorithms Parikshit Gopalan U Washington & MSR-SVC Venkatesan Guruswami U Washington & IAS.
Iterative Rounding and Iterative Relaxation
Linear-Degree Extractors and the Inapproximability of Max Clique and Chromatic Number David Zuckerman University of Texas at Austin.
Sublinear Algorithms … Lecture 23: April 20.
Russell Impagliazzo ( IAS & UCSD ) Ragesh Jaiswal ( Columbia U. ) Valentine Kabanets ( IAS & SFU ) Avi Wigderson ( IAS ) ( based on [IJKW08, IKW09] )
Direct Product : Decoding & Testing, with Applications Russell Impagliazzo (IAS & UCSD) Ragesh Jaiswal (Columbia) Valentine Kabanets (SFU) Avi Wigderson.
Vertex cover might be hard to approximate within 2 - ε Subhash Khot, Oded Regev Slides by: Ofer Neiman.
A threshold of ln(n) for approximating set cover By Uriel Feige Lecturer: Ariel Procaccia.
NP-Hard Nattee Niparnan.
Subhash Khot IAS Elchanan Mossel UC Berkeley Guy Kindler DIMACS Ryan O’Donnell IAS.
Inapproximability of Hypergraph Vertex-Cover. A k-uniform hypergraph H= : V – a set of vertices E - a collection of k-element subsets of V Example: k=3.
Multiplicity Codes Swastik Kopparty (Rutgers) (based on [K-Saraf-Yekhanin ’11], [K ‘12], [K ‘14])
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Inapproximability of MAX-CUT Khot,Kindler,Mossel and O ’ Donnell Moshe Ben Nehemia June 05.
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Dana Moshkovitz MIT Joint work with Subhash Khot, NYU 1.
The Max-Cut problem: Election recounts? Majority vs. Electoral College? 7812.
On the Unique Games Conjecture Subhash Khot Georgia Inst. Of Technology. At FOCS 2005.
Generalization and Specialization of Kernelization Daniel Lokshtanov.
Max Cut Problem Daniel Natapov.
Inapproximability Seminar – 2005 David Arnon  March 3, 2005 Some Optimal Inapproximability Results Johan Håstad Royal Institute of Technology, Sweden.
Gillat Kol joint work with Irit Dinur Covering CSPs.
MaxClique Inapproximability Seminar on HARDNESS OF APPROXIMATION PROBLEMS by Dr. Irit Dinur Presented by Rica Gonen.
Simple Affine Extractors using Dimension Expansion. Matt DeVos and Ariel Gabizon.
Constraint Satisfaction over a Non-Boolean Domain Approximation Algorithms and Unique Games Hardness Venkatesan Guruswami Prasad Raghavendra University.
Probabilistically Checkable Proofs (and inapproximability) Irit Dinur, Weizmann open day, May 1 st 2009.
Approximation Algorithms for Unique Games Luca Trevisan Slides by Avi Eyal.
Introduction to PCP and Hardness of Approximation Dana Moshkovitz Princeton University and The Institute for Advanced Study 1.
A 3-Query PCP over integers a.k.a Solving Sparse Linear Systems Prasad Raghavendra Venkatesan Guruswami.
1/17 Optimal Long Test with One Free Bit Nikhil Bansal (IBM) Subhash Khot (NYU)
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
Inapproximability from different hardness assumptions Prahladh Harsha TIFR 2011 School on Approximability.
Two Query PCP with Sub-constant Error Dana Moshkovitz Princeton University Ran Raz Weizmann Institute 1.
Dictator tests and Hardness of approximating Max-Cut-Gain Ryan O’Donnell Carnegie Mellon (includes joint work with Subhash Khot of Georgia Tech)
Yi Wu (CMU) Joint work with Vitaly Feldman (IBM) Venkat Guruswami (CMU) Prasad Ragvenhdra (MSR)
1 2 Introduction In this chapter we examine consistency tests, and trying to improve their parameters: In this chapter we examine consistency tests,
Correcting Errors Beyond the Guruswami-Sudan Radius Farzad Parvaresh & Alexander Vardy Presented by Efrat Bank.
6/20/2015List Decoding Of RS Codes 1 Barak Pinhas ECC Seminar Tel-Aviv University.
CSE 326: Data Structures NP Completeness Ben Lerner Summer 2007.
EXPANDER GRAPHS Properties & Applications. Things to cover ! Definitions Properties Combinatorial, Spectral properties Constructions “Explicit” constructions.
1 The PCP starting point. 2 Overview In this lecture we’ll present the Quadratic Solvability problem. In this lecture we’ll present the Quadratic Solvability.
1 Joint work with Shmuel Safra. 2 Motivation 3 Motivation.
1 Hardness Result for MAX-3SAT This lecture is given by: Limor Ben Efraim.
Dana Moshkovitz, MIT Joint work with Subhash Khot, NYU.
Sub-Constant Error Low Degree Test of Almost-Linear Size Dana Moshkovitz Weizmann Institute Ran Raz Weizmann Institute.
Hardness of Learning Halfspaces with Noise Prasad Raghavendra Advisor Venkatesan Guruswami.
Direct-product testing, and a new 2-query PCP Russell Impagliazzo (IAS & UCSD) Valentine Kabanets (SFU) Avi Wigderson (IAS)
15-853:Algorithms in the Real World
1/19 Minimizing weighted completion time with precedence constraints Nikhil Bansal (IBM) Subhash Khot (NYU)
List Decoding Using the XOR Lemma Luca Trevisan U.C. Berkeley.
Pseudorandomness: New Results and Applications Emanuele Viola IAS April 2007.
Tali Kaufman (Bar-Ilan)
IERG6120 Lecture 22 Kenneth Shum Dec 2016.
Lecture 2-2 NP Class.
Polynomial integrality gaps for
Sublinear-Time Error-Correction and Error-Detection
Local Decoding and Testing Polynomials over Grids
Subhash Khot Dept of Computer Science NYU-Courant & Georgia Tech
Local Error-Detection and Error-correction
Intro to NP Completeness
Locally Decodable Codes from Lifting
Introduction to PCP and Hardness of Approximation
Imperfectly Shared Randomness
Umans Complexity Theory Lectures
CS151 Complexity Theory Lecture 10 May 2, 2019.
Zeev Dvir (Princeton) Shachar Lovett (IAS)
Presentation transcript:

Hardness of Reconstructing Multivariate Polynomials. Parikshit Gopalan U. Washington Parikshit Gopalan U. Washington Subhash Khot NYU/Gatech Rishi Saket Gatech/NYU Rishi Saket Gatech/NYU

Curve Fitting Problem: Given data points, find a low degree polynomial that fits best. Easy if there is a perfect fit. Well studied problem …

Curve Fitting through the ages

!

Statistics: Least Squares

Polynomial Reconstruction Coding Theory Computational Learning Cryptography PCPs Pseudorandom -ness

The Reconstruction Problem Input: Degree d. PointsValues x1x1x1x1 f(x 1 ) xixixixi f(x i ) xmxmxmxm f(x m ) Output: A degree d polynomial that best fits the data. In this talk: Finite fields, Hamming distance.

The Reconstruction Problem Input: Degree d, set S, values f(x) for x 2 S. Output: A degree d polynomial that best fits the data. Parameters that matter: 1. Degree d, Field F. 2. Set S. 3. How good is the best fit? (error-rate )

Algorithms for Reconstruction Univariate Case [Sudan, Guruswami-Sudan]: Multivariate Case [Goldreich-Levin, Goldreich- Rubinfeld-Sudan, Arora-Sudan, Sudan-Trevisan-Vadhan]: Can tolerate very high error rate. Are these algorithms optimal?

Hardness Results: Univariate Case Degree d polynomials, n points in F. [Guruswami-Vardy]: NP-hard to tell if some degree d poly. has d +2 agreements. [Guruswami-Sudan]: Can tell if some degree d poly. has (nd) 0.5 agreement.

Hardness Results: Multivariate Case Linear polynomials over F 2 [Hastad] : NP-hard to tell if Some linear poly. satisfies 1- fraction of points. Some linear poly. satisfies 1- fraction of points. Every linear poly. satisfies less than fraction of points. Every linear poly. satisfies less than fraction of points. Extends to any F and d =1. Implies something for d < F. d ¸ 2 over F 2 : Nothing known.

Our Results Over F 2 for any d, NP-hard to tell whether Some linear polynomial satisfies 1- fraction of points. Some linear polynomial satisfies 1- fraction of points. Every degree d polynomial satisfies at most d + fraction of points. Every degree d polynomial satisfies at most d + fraction of points. SZ Lemma: For a degree d poly P 0 over F 2, Pr x [ P(x) 0] ¸ 2 -d. d=1 ½ + ½ + d=2 ¾ + ¾ +

Our Results Over F q for any d, NP-hard to tell whether Some linear polynomial satisfies 1- fraction of points. Some linear polynomial satisfies 1- fraction of points. Every degree d polynomial satisfies at most c(d,q) + fraction of points. Every degree d polynomial satisfies at most c(d,q) + fraction of points. c(d,q): Schwartz-Zippel for polynomials of total degree d over F q.

Overview of Reduction Reducing from Label-Cover. Reducing from Label-Cover. Dictatorship Testing. Dictatorship Testing. Consistency Testing. Consistency Testing. Putting it all together. Putting it all together.

Label Cover Graph: G(V,E), |V| =n. Labels: [k] Edges: e ½ [k] £ [k] Goal: Find a labeling satisfying all edges. Thm [PCP + Raz]: It is NP-hard to tell if Some labeling satisfies all edges. Every labeling satisfies · frac. of edges. 1 2 n 3

X 1 1 X 1 2 … X 1 k The Reduction X 2 1 X 2 2 … X 2 k X 3 1 X 3 2 … X 3 k X n 1 X n 2 … X n k Henceforth d =2, field = F 2. Constraints: Points in {0,1} nk + values. Yes Case: Some L satisfies most constraints. No Case: No Q satisfies many constraints.

The Reduction X 1 1 X 1 2 … X 1 k X 2 1 X 2 2 … X 2 k X 3 1 X 3 2 … X 3 k X n 1 X n 2 … X n k If l(v) is a good labelling, then L = v X v l(v) will satisfy most points.

The Reduction X 1 1 X 1 2 … X 1 k X 2 1 X 2 2 … X 2 k X 3 1 X 3 2 … X 3 k X n 1 X n 2 … X n k If l(v) is a good labelling, then L = v X v l(v) will satisfy most points. Any Q that does ¾ + gives a labelling satisfying fraction of edges.

Dictatorship: Q 1 = Q(X 1 1,…,X 1 k,0,..,0). Q 1 looks like a Dictator X 1 j. Will settle for small list. Consistency: Some pair of labels in the list satisfy. 3, 71, 99 17, 45 Overview of Reduction Constant independent of k.

Dictatorship: Q 1 = Q(X 1 1,…,X 1 k,0,..,0). Q 1 looks like a Dictator X 1 j. Will settle for small list. Can enforce this for frac. of vertices. Consistency: Some pair of labels in the list satisfy. Can enforce this for all edges. 3, 71, 99 17, 45 Overview of Reduction

3, 71, 99 17, 45 Overview of Reduction If Q does ¾ + Small list for frac. of vertices. Consistency for all edges. Assign random labels from list. Satisfies constant fraction of edges.

Overview of Reduction Dictatorship Testing. Dictatorship Testing. Consistency Testing. Consistency Testing. Putting it all together. Putting it all together.

Overview of Reduction Dictatorship Testing. Dictatorship Testing. Consistency Testing. Consistency Testing. Putting it all together. Putting it all together.

Dictatorship Testing for low- degree Polynomials. Input: Q(X 1,…,X k ) of degree 2. Goal: Design a test s.t Every dictatorship X i passes w.p close to 1. Every dictatorship X i passes w.p close to 1. If Q does better than ¾, it is close to a dictatorship. If Q does better than ¾, it is close to a dictatorship. Test: Pick a random point x 2 {0,1} k. Check if Q(x) = y. Mini reconstruction problem! Small List

Dictatorship Testing for low- degree Polynomials. Dictatorships Quadratic polys. All polys.

Dictatorship Testing [Hastad, Bourgain, MOO] Dictatorships All polys. Hard to do with just 2 queries.

Dictatorship Testing for low- degree Polynomials. Dictatorships Quadratic polys. Poly. is of low degree. Allowed one query (!)

Dictatorship Test (0,…,0) (1,…,1) Dictatorship Test: Pick 2 {0,1} k from the -biased distribution. Check if Q( ) = 0. Uniform dist: Quadratic polys. are 3:1 balanced. -biased: Dictatorships are highly skewed. Is there a converse? Each i =1 independently. w.p

Dictatorship Test Dictatorship Test: Pick 2 {0,1} k from the -biased distribution. Check if Q( ) = 0. X i passes w.p 1-. X i X j passes w.p X 1 (X 1 + … + X ) + X 2 (X + …) passes w.p 1 - 2

Dictatorship Test Dictatorship Test: Pick 2 {0,1} k from the -biased distribution. Check if Q( ) = 0. Define G(Q) to be the graph of Q. Q = X 1 X 2 + X 2 X 3, G(Q) = Thm: If Q passes w.p ¾ +, then G(Q) has no large matchings

Dictatorship Test Dictatorship Test: Pick 2 {0,1} k from the -biased distribution. Check if Q( ) = 0. Thm: If Q passes w.p ¾ +, then G(Q) has no large matchings. 1. Large matching: Independent monomials. 2. Only small matchings: Small vertex cover. X 1 L 1 + X 2 L 2

Dictatorship Test Dictatorship Test: Pick 2 {0,1} k from the -biased distribution. Check if Q( ) = 0. Thm: If Q does better than ¾, then G(Q) has no large matchings. QQ X i = 0 w.p 1- 2 X i 2 R {0,1} c = ? 0 If G(Q) has a large matching, then Q 0 w.h.p. If Q 0, then c =1 w.p ¸ ¼ (SZ lemma). If Q does well, G(Q) has no large matchings.

Dictatorship Test Dictatorship Test: Pick 2 {0,1} k from the -biased distribution. Check if Q( ) = 0. Thm: If Q does better than ¾, then G(Q) has no large matchings. If G(Q) has a large matching, then Q 0 w.h.p. Each edge survives w.p 4 2. Events for each matching edge are independent.

Dictatorship Test Dictatorship Test: Pick 2 {0,1} k from the -biased distribution. Check if Q( ) = 0. Define G(Q) to be the graph of Q. Q = X 1 X 2 + X 2 X 3, G(Q) = Thm: If Q passes w.p ¾ +, then G(Q) has no large matchings Small List: Vertex set of a maximal matching.

Dictatorship: Assign a small list to a vertex. Consistency: Some pair of labels in the list satisfy. 3, 71, 99 17, 45 Overview of Reduction

Overview of Reduction Dictatorship Testing. Dictatorship Testing. Consistency Testing. Consistency Testing. Putting it all together. Putting it all together.

Consistency Testing l(x) = l(y)

Consistency Testing X 1 X 2 … X k Y 1 Y 2 … Y k l(x) = l(y) Given Q(X 1,…,X k,Y 1,…,Y k ) s.t Q(X i ) and Q(Y j ) both pass the dict. Test. Want Q(X 1,..,X k,0,…,0) = Q(0,…,0,Y 1,…,Y k ). Test: Q(r,0) = Q(0,r) for r 2 R {0,1} k. Two queries!

Consistency via Folding X 1 X 2 … X k Y 1 Y 2 … Y k l(x) = l(y) Yes case: Q = X i + Y i for some i. All of them vanish over H = (r,r). Constant on each coset of H. Enforce this on Q even in the No case. H

Consistency via Folding Def: Q is folded over subspace H µ {0,1} k if Q is constant on every coset of H. Examples: Linear polys., juntas. H Thm: Q is folded over H iff for some nice basis ( 1,…, t, 1,..., k-t ), Q = R( 1,…, t ) is a t-junta for t = k – dim(H) In the nice basis ( 1,…, t, 1,..., k-t ) i s: coset of H, j s: position in coset.

Template for Folding Want Q folded over a subspace H. Compute nice basis ( i, j ). Ask for R( 1,…, t ). To test if Q(x) = y o Let x = ( ); test R( ) = y. For analysis: Rewrite R( ) as Q(x). Now Q is folded. H {0,1} n /H

Consistency via Folding l(x) = l(y) Fold over H = (r,r) for r 2 {0,1} k. Polys. folded over H can be written as: Q(X 1,…,X k,Y 1,…,Y k ) = R(X 1 +Y 1, …, X k + Y k ) Gives Q(X 1,…,X k ) = Q(Y 1,…,Y k ).

Dictatorship: Assign a small list to a vertex. Consistency: Some pair of labels in the list satisfy. 3, 71, 99 17, 45 Overview of Reduction

Consistency via Folding l(x) = l(y) Fold over H = (r,r) for r 2 {0,1} k. Polys. folded over H can be written as: Q(X 1,…,X k,Y 1,…,Y k ) = R(X 1 +Y 1, …, X k + Y k ) Gives Q(X 1,…,X k ) = Q(Y 1,…,Y k ). List of X i s: Vertex set of maximal matching. Every two maximal matchings intersect.

Consistency Test 1.Graphs of restrictions are the same. 2.Graph has no large matchings. 3. List = Vertex set of maximal matching. G(Q(X 1,…,X k )) G(Q(Y 1,…,Y k ))

Consistency Test 1.Graphs of restrictions are the same. 2.Graph has no large matchings. 3. List = Vertex set of maximal matching. G(Q(X 1,…,X k )) G(Q(Y 1,…,Y k ))

Summary of Reduction Each constraint gives H ½ {0,1} nk. Fold over the span of all H. Run Dict. test on every vertex. No explicit consistency tests. If Q passes w.p ¾ +, fraction of vertices do well on Dict. test. Consistency for all edges by folding.

Overview of Reduction Dictatorship Testing. Dictatorship Testing. Consistency Testing. Consistency Testing. Putting it all together. Putting it all together.

Projections … X 1 1 X 1 2 … X 1 k X 2 1 X 2 2 … X 2 k X 3 1 X 3 2 … X 3 k X n 1 X n 2 … X n k Can handle equality, permutations. Need perfect completeness: no UGC. Have to deal with projections.

Projections … 1, 2, k (l u ) = (l v ) 1, 2, k 1,,t [k] ! [t]

Projections … 1, 2, k (l u ) = (l v ) 1, 2, k 1,,t [k] ! [t]

Projections … Decoding is a vertex cover for G(Q i ). Need to show that every two vertex covers intersect.

Projections … Do every two vertex covers of G intersect? No:

Projections … Do every two vertex covers of G intersect? … but in any three VCs, some pair intersects. No:

Hypergraph Label Cover 1, 2, k 1,,t [k] ! [t] 1, 2, k [k] ! [t] Strongly satisfied: all 3 projections agree. Weakly satisfied: some 2 agree. Thm: NP-hard to tell if all edges are strongly satsified or at most are weakly satified.

Main Theorem Over F 2 for any d, NP-hard to tell whether Some linear polynomial satisfies 1- fraction of points. Some linear polynomial satisfies 1- fraction of points. Every degree d polynomial satisfies at most d + fraction of points. Every degree d polynomial satisfies at most d + fraction of points.

Better Hardness? Problem: Can we improve soundness to ? Bottleneck: Dictatorship test. Present analysis is optimal in general: Q = (X X k )(X k+1 + … +X 2k ) passes w.p ¾. Can assume that Q is balanced.

Thank You!

Curve Fitting in Deep Space

!

G : graph on k vertices. Alice and Bob have G. Want to pick a common vertex. G Consistency Testing

G : graph on k vertices. Pick a maximal matching; output a random vertex. G Consistency Testing

Overall Reduction X 1 1 X 1 2 … X 1 k X 2 1 X 2 2 … X 2 k X 3 1 X 3 2 … X 3 k Fold over consistency constraints. Test dictatorship on every vertex. If fraction do better than ¾, many edges are satisfied.