CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 - Introduction.

Slides:



Advertisements
Similar presentations
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 2 - Search.
Advertisements

CS344: Principles of Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 7, 8, 9: Monotonicity 16, 17 and 19 th Jan, 2012.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture– 4, 5, 6: A* properties 9 th,10 th and 12 th January,
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 15, 16, 17- Completeness Proof; Self References and.
CSC 423 ARTIFICIAL INTELLIGENCE
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–1: Introduction.
Slide 1 Heuristic Search: BestFS and A * Jim Little UBC CS 322 – Search 5 September 19, 2014 Textbook § 3.6.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–1: Introduction 2 nd January
1 Solving Problems by Searching. 2 Terminology State State Space Initial State Goal Test Action Step Cost Path Cost State Change Function State-Space.
Problem Solving and Search in AI Heuristic Search
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–2,3: A* 3 rd and 5 th January, 2012.
State-Space Searches. 2 State spaces A state space consists of –A (possibly infinite) set of states The start state represents the initial problem Each.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 13– Search.
State-Space Searches.
CS621: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–1: Introduction 22 nd July 2010.
Artificial Intelligence Dr. Paul Wagner Department of Computer Science University of Wisconsin – Eau Claire.
1 State Space of a Problem Lecture 03 ITS033 – Programming & Algorithms Asst. Prof.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5: Monotonicity 13 th Jan, 2011.
CS 344 Artificial Intelligence By Prof: Pushpak Bhattacharya Class on 15/Jan/2007.
CS 415 – A.I. Slide Set 5. Chapter 3 Structures and Strategies for State Space Search – Predicate Calculus: provides a means of describing objects and.
State-Space Searches. 2 State spaces A state space consists of A (possibly infinite) set of states The start state represents the initial problem Each.
CS.462 Artificial Intelligence SOMCHAI THANGSATHITYANGKUL Lecture 02 : Search.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–1: Introduction.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 - Introduction.
CS344: Introduction to Artificial Intelligence (associated lab: CS386) Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–39: Recap.
For Friday Finish reading chapter 4 Homework: –Lisp handout 4.
For Monday Read chapter 4, section 1 No homework..
CS344: Introduction to Artificial Intelligence (associated lab: CS386)
Problem solving by search Department of Computer Science & Engineering Indian Institute of Technology Kharagpur.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3 - Search.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 5: Power of Heuristic; non- conventional search.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture–2: Introduction: Search+Logic.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 2 - Search.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 - Introduction.
Knowledge Representation Fall 2013 COMP3710 Artificial Intelligence Computing Science Thompson Rivers University.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 13– Search 17 th August, 2010.
CS621 : Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3 - Search.
CS344: Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 17– Theorems in A* (admissibility, Better performance.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lectures 18, 19, 20– A* Monotonicity 2 nd, 6 th and 7 th September, 2010.
CS344: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 to 8– Introduction, Search, A* (has the associated lab course: CS386)
Artificial Intelligence Lecture No. 8 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
Search Methodologies Fall 2013 Comp3710 Artificial Intelligence Computing Science Thompson Rivers University.
Computing & Information Sciences Kansas State University Wednesday, 04 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 17 of 42 Wednesday, 04 October.
CS621: Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 3: Search, A*
Computing & Information Sciences Kansas State University Friday, 13 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 21 of 42 Friday, 13 October.
For Monday Read chapter 4 exercise 1 No homework.
Introduction to Artificial Intelligence Heshaam Faili University of Tehran.
Knowledge Representation
Artificial Intelligence
Artificial Intelligence for Engineers
CS 621 Artificial Intelligence Lecture 1 – 28/07/05
Artificial Intelligence Problem solving by searching CSC 361
Artificial Intelligence for Engineers
The A* Algorithm Héctor Muñoz-Avila.
CS344: Artificial Intelligence
CSE (c) S. Tanimoto, 2001 Search-Introduction
CS621: Artificial Intelligence
CS621: Artificial Intelligence
Knowledge Representation
CSE (c) S. Tanimoto, 2002 State-Space Search
Introduction to Artificial Intelligence
Artificial Intelligence
State-Space Searches.
State-Space Searches.
CS621: Artificial Intelligence
CSE (c) S. Tanimoto, 2004 State-Space Search
Introduction to Artificial Intelligence
State-Space Searches.
Presentation transcript:

CS344 : Introduction to Artificial Intelligence Pushpak Bhattacharyya CSE Dept., IIT Bombay Lecture 1 - Introduction

Persons involved Faculty instructor: Dr. Pushpak Bhattacharyya ( TAs: Annervaz Avishek Sapan Course home page (to be created) Venue, Webcast etc.: Rahul Deshmukh, Sachin and others

Areas of AI and their inter- dependencies Search Vision Planning Machine Learning Knowledge Representation Logic Expert Systems RoboticsNLP

Resources Main Text: Artificial Intelligence: A Modern Approach by Russell & Norvik, Pearson, Other Main References: Principles of AI - Nilsson AI - Rich & Knight Knowledge Based Systems – Mark Stefik Journals AI, AI Magazine, IEEE Expert, Area Specific Journals e.g, Computational Linguistics Conferences IJCAI, AAAI

Allied Disciplines PhilosophyKnowledge Rep., Logic, Foundation of AI (is AI possible?) MathsSearch, Analysis of search algos, logic EconomicsExpert Systems, Decision Theory, Principles of Rational Behavior PsychologyBehavioristic insights into AI programs Brain ScienceLearning, Neural Nets PhysicsLearning, Information Theory & AI, Entropy, Robotics Computer Sc. & Engg.Systems for AI

Topics to be covered Search General Graph Search, A* Iterative Deepening, α-β pruning, probabilistic methods Logic Formal System Propositional Calculus, Predicate Calculus Inductive Logic Programming Knowledge Representation Predicate calculus, Semantic Net, Frame Script, Conceptual Dependency, Uncertainty

Other Material Classical Machine Learning Learning from examples Decision Trees Analogical Learning Explanation Based Learning Computer Vision AI methods in Computer Vision Planning Rule Based Stochastic

Seminars and Projects to be done: suggested areas Web and AI Robotic Algorithms Prediction, Forecasting Brain Science and AI Computer Games Seminar: part of cs344 evaluation Project: part of cs386 evaluation

Search Search is present everywhere

Planning (a) which block to pick, (b) which to stack, (c) which to unstack, (d) whether to stack a block or (e) whether to unstack an already stacked block. These options have to be searched in order to arrive at the right sequence of actions. ACBA B C Table

Vision A search needs to be carried out to find which point in the image of L corresponds to which point in R. Naively carried out, this can become an O(n2) process where n is the number of points in the retinal images. World Two eye system RL

Robot Path Planning searching amongst the options of moving Left, Right, Up or Down. Additionally, each movement has an associated cost representing the relative difficulty of each movement. The search then will have to find the optimal, i.e., the least cost path. O1O1 R D O2O2 Robot Path

Natural Language Processing search among many combinations of parts of speech on the way to deciphering the meaning. This applies to every level of processing- syntax, semantics, pragmatics and discourse. The man would like to play. Noun Verb NounVerb Preposition

Expert Systems Search among rules, many of which can apply to a situation: If-conditions the infection is primary-bacteremia AND the site of the culture is one of the sterile sites AND the suspected portal of entry is the gastrointestinal tract THEN there is suggestive evidence (0.7) that infection is bacteroid (from MYCIN)

Algorithmics of Search

General Graph search Algorithm S ACB F ED G Graph G = (V,E)

1) Open List : S (Ø, 0) Closed list : Ø 2) OL : A (S,1), B (S,3), C (S,10) CL : S 3) OL : B (S,3), C (S,10), D (A,6) CL : S, A 4) OL : C (S,10), D (A,6), E (B,7) CL: S, A, B 5) OL : D (A,6), E (B,7) CL : S, A, B, C 6) OL : E (B,7), F (D,8), G (D, 9) CL : S, A, B, C, D 7) OL : F (D,8), G (D,9) CL : S, A, B, C, D, E 8) OL : G (D,9) CL : S, A, B, C, D, E, F 9) OL : Ø CL : S, A, B, C, D, E, F, G

Key data structures : Open List, Closed list Nodes from open list are taken in some order, expanded and children are put into open list and parent is put into closed list. Assumption: Monotone restriction is satisfied. That is the estimated cost of reaching the goal node for a particular node is no more than the cost of reaching a child and the estimated cost of reaching the goal from the child GGS Data Structures S n1n1 n2n2 g C(n 1,n 2 ) h(n 2 ) h(n 1 )

GGS OL is a queue (BFS) OL is stack (DFS) OL is accessed by using a functions f= g+h (Algorithm A) BFS, DFS – Uninformed / Brute Force Search methods

Algorithm A A function f is maintained with each node f(n) = g(n) + h(n), n is the node in the open list Node chosen for expansion is the one with least f value For BFS: h = 0, g = number of edges in the path to S For DFS: h = 0, g =

Algorithm A* One of the most important advances in AI g(n) = least cost path to n from S found so far h(n) <= h*(n) where h*(n) is the actual cost of optimal path to G(node to be found) from n S n G g(n) h(n) “ Optimism leads to optimality ”

Search building blocks  State Space : Graph of states (Express constraints and parameters of the problem)  Operators : Transformations applied to the states.  Start state : S 0 (Search starts from here)  Goal state : {G} - Search terminates here.  Cost : Effort involved in using an operator.  Optimal path : Least cost path

Examples Problem 1 : 8 – puzzle S0S0 2 G Tile movement represented as the movement of the blank space. Operators: L : Blank moves left R : Blank moves right U : Blank moves up D : Blank moves down C(L) = C(R) = C(U) = C(D) = 1

Problem 2: Missionaries and Cannibals Constraints The boat can carry at most 2 people On no bank should the cannibals outnumber the missionaries River R L Missionaries Cannibals boat Missionaries Cannibals

State : #M = Number of missionaries on bank L #C = Number of cannibals on bank L P = Position of the boat S0 = G = Operations M2 = Two missionaries take boat M1 = One missionary takes boat C2 = Two cannibals take boat C1 = One cannibal takes boat MC = One missionary and one cannibal takes boat

C2MC Partial search tree

Problem 3 BBWWW B G: States where no B is to the left of any W Operators: 1) A tile jumps over another tile into a blank tile with cost 2 2) A tile translates into a blank space with cost 1 All the three problems mentioned above are to be solved using A*

A*

A* Algorithm – Definition and Properties f(n) = g(n) + h(n) The node with the least value of f is chosen from the OL. f*(n) = g*(n) + h*(n), where, g*(n) = actual cost of the optimal path (s, n) h*(n) = actual cost of optimal path (n, g) g(n) ≥ g*(n) By definition, h(n) ≤ h*(n) S s n goal State space graph G g(n) h(n)

8-puzzle: heuristics sng Example: 8 puzzle h*(n) = actual no. of moves to transform n to g 1.h 1 (n) = no. of tiles displaced from their destined position. 2.h 2 (n) = sum of Manhattan distances of tiles from their destined position. h 1 (n) ≤ h*(n) and h 1 (n) ≤ h*(n) h* h2h2 h1h1 Comparison

3 missionaries (m) and 3 cannibals (c) on the left side of the river and only one boat is available for crossing over to the right side. At any time the boat can carry at most 2 persons and under no circumstance the number of cannibals can be more than the number of missionaries on any bank Missionaries and Cannibals Problem

Missionaries and Cannibals Problem: heuristics Start state: Goal state: h 1 (n) = (no. of m + no. of c) / 2, on the left side h 2 (n) = no. of m + no. of c – 1 h 1 (n) ≤ h*(n) and h 1 (n) ≤ h*(n)