Section 7 : Triangle Congruence: CPCTC

Slides:



Advertisements
Similar presentations
Warm Up Lesson Presentation Lesson Quiz.
Advertisements

Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List the 4 theorems/postulates.
Proving Triangles Congruent Geometry D – Chapter 4.4.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
SIMILAR TRIANGLES.
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Triangle Similarity: AA, SSS, and SAS 7-3 Holt Geometry.
11. No, need  MKJ   MKL 12. Yes, by Alt Int Angles  SRT   UTR and  STR   URT; RT  RT (reflex) so ΔRST  ΔTUR by ASA 13.  A   D Given  C 
4.4 Prove Triangles Congruent by SSS
Angle Relationships in Triangles Holt Geometry Lesson Presentation Lesson Presentation Holt McDougal Geometry.
Holt Geometry 4-6 Triangle Congruence: CPCTC Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
C HAPTER congruent triangles. SAT P ROBLEM OF THE DAY.
Chapter congruent triangle : SSS and SAS. SAT Problem of the day.
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry.
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 4-6 Triangle Congruence: CPCTC 4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
CPCTC Be able to use CPCTC to find unknowns in congruent triangles! Are these triangles congruent? By which postulate/theorem? _____  _____ J L K N M.
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
Warm-up Identify the postulate or theorem that proves the triangles congruent.
Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
________________ is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof.
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-6 Triangle Congruence: CPCTC Holt Geometry.
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ? .
Geometry 4-6 CPCTC. Definition  Corresponding Parts of Congruent Triangles are Congruent (CPCTC)  If two triangles are congruent, then all of their.
Unit 4: Triangle congruence
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Holt Geometry 4-3 Congruent Triangles 4-3 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
4-8 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective Use CPCTC to prove parts of triangles are congruent.
Objective! Use CPCTC to prove parts of triangles are congruent.
Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Holt Geometry Lesson Presentation.
Standardized Test Practice
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-4 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective! Use CPCTC to prove parts of triangles are congruent.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
5.7 Vocabulary CPCTC CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective Use CPCTC to prove parts of triangles are congruent.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm-Up Which congruence shortcut, if any,
CPCTC uses congruent triangles to prove corresponding parts congruent.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC 4-4
1. Write a congruence statement.
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
1. Write a congruence statement.
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Ways to prove triangles congruent:
4-1 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Warm Up Find the measures of the sides of ∆ABC and classify the triangle by its sides. A(-7, 9) B(-7, -1) C(4, -1) AB = 10 BC = 11 AC = √221 The triangle.
Basic Geometry Section 4-6: Triangle Congruence: CPCTC
Presentation transcript:

Section 7 : Triangle Congruence: CPCTC Chapter 4 Section 7 : Triangle Congruence: CPCTC

Objectives Use CPCTC to prove parts of triangles are congruent.

What is CPCTC? CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof after you have proven two triangles congruent.

Remember !!! SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent.

Example 1: Engineering Application A and B are on the edges of a ravine. What is AB? One angle pair is congruent, because they are vertical angles. Two pairs of sides are congruent, because their lengths are equal. Therefore the two triangles are congruent by SAS. By CPCTC, the third side pair is congruent, so AB = 18 mi.

Example 2 A landscape architect sets up the triangles shown in the figure to find the distance JK across a pond. What is JK? One angle pair is congruent, because they are vertical angles. Two pairs of sides are congruent, because their lengths are equal. Therefore the two triangles are congruent by SAS. By CPCTC, the third side pair is congruent, so JK = 41 ft.

Example 3 Proofs Given: YW bisects XZ, XY  YZ. Prove: XYW  ZYW Z

solution

Example 4 Given: PR bisects QPS and QRS. Prove: PQ  PS

solutions PR bisects QPS QRP  SRP and QRS QPR  SPR RP  PR Given Def. of  bisector RP  PR Reflex. Prop. of  ∆PQR  ∆PSR PQ  PS ASA CPCTC

Student guided practice Do problems 2 and3 in your book page 270

Example 5 Prove: MN || OP Given: NO || MP, N  P

solution Statements Reasons 1. N  P; NO || MP 1. Given 2. NOM  PMO 2. Alt. Int. s Thm. 3. MO  MO 3. Reflex. Prop. of  4. ∆MNO  ∆OPM 4. AAS 5. NMO  POM 5. CPCTC 6. MN || OP 6. Conv. Of Alt. Int. s Thm.

Example 6 Prove: KL || MN Given: J is the midpoint of KM and NL.

solution Statements Reasons 1. Given 1. J is the midpoint of KM and NL. 2. KJ  MJ, NJ  LJ 2. Def. of mdpt. 3. KJL  MJN 3. Vert. s Thm. 4. ∆KJL  ∆MJN 4. SAS Steps 2, 3 5. LKJ  NMJ 5. CPCTC 6. KL || MN 6. Conv. Of Alt. Int. s Thm.

Student guided practice Do problem 4 in your book page 271

Example 7 Given: D(–5, –5), E(–3, –1), F(–2, –3), G(–2, 1), H(0, 5), and I(1, 3) Prove: DEF  GHI

solution Step 1 Plot the points on a coordinate plane.

solution Step 2 Use the Distance Formula to find the lengths of the sides of each triangle.

solution So DE  GH, EF  HI, and DF  GI. Therefore ∆DEF  ∆GHI by SSS, and DEF  GHI by CPCTC.

Example 8 Given: J(–1, –2), K(2, –1), L(–2, 0), R(2, 3), S(5, 2), T(1, 1) Prove: JKL  RST Solution: Step 1 Plot the points on a coordinate plane

solution Step 2 Use the Distance Formula to find the lengths of the sides of each triangle. RT = JL = √5, RS = JK = √10, and ST = KL = √17. So ∆JKL  ∆RST by SSS. JKL  RST by CPCTC.

Student guided practice Do problems 7-13 in your book page 271

Closure Today we saw CPTCP and how we can prove corresponding parts to corresponding triangles Next class we are going to learn about Introduction to coordinate proofs