Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, 074002 (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”

Slides:



Advertisements
Similar presentations
1 Holographic description of Hadrons from String Theory Shigeki Sugimoto (IPMU) Rencontres de Moriond, March 25, La Thuile, Italy (based on works.
Advertisements

Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
Hadronic matter from the vector manifestation (VM) fixed point Mannque Rho Chiral 05/RIKEN.
Hadrons and Nuclei : Introductory Remarks Lattice Summer School Martin Savage Summer 2007 University of Washington.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) (arXiv: ) Eur. Phys. J. A50 (2014) 16 Some preliminary results Heavy.
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia Contents.
Quark Correlations and Single Spin Asymmetry Quark Correlations and Single Spin Asymmetry G. Musulmanbekov JINR, Dubna, Russia Contents.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
Lagrangian of QED: 8 9 fine-structure constant =
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Recent progress on nuclear physics from Skyrme model Yong-Liang Ma Jilin University In Collaboration with: M. Harada, B. R. He H. K. Lee, Y. Oh, B. Y.
MEM analysis of the QCD sum rule and its Application to the Nucleon spectrum Tokyo Institute of Technology Keisuke Ohtani Collaborators : Philipp Gubler,
1 Kaon-Soliton Binding and Pentaquark Skyrmion Kaon-Soliton Binding and Pentaquark Skyrmion Mannque Rho (Saclay & Hanyang) 2004 Based on work with D.-P.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Twist-3 distribution amplitudes of scalar mesons from QCD sum rules Y.M Wang In collaboration with C.D Lu and H. Zou Institute of High Energy Physics,
Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,
Hadrons: color singlets “white states”
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
June 25, 2004 Jianwei Qiu, ISU 1 Introduction to Heavy Quark Production Jianwei Qiu Iowa State University CTEQ Summer School on QCD Analysis and Phenomenology.
Masayasu Harada (Nagoya Univ.) based on M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003) M.H., T.Fujimori and C.Sasaki, in KIAS-Hanyang Joint.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
Nucleon Polarizabilities: Theory and Experiments
Chiral symmetry breaking and low energy effective nuclear Lagrangian Eduardo A. Coello Perez.
SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL SPIN STRUCTURE OF PROTON IN DYNAMICAL QUARK MODEL G. Musulmanbekov JINR, Dubna, Russia
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
Quark-gluon correlation inside the B-meson from QCD sum rules based on heavy quark effective theory Tetsuo Nishikawa (Ryotokuji U) Kazuhiro Tanaka (Juntendo.
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。
Denis Parganlija (Frankfurt U.) Excited QCD 2010, Tatranska Lomnica/Slovakia Nature of Light Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450)
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Helmholtz International Summer School, Dubna, 24 July 2008 Pion decay constant in Dense Skyrmion Matter Hee-Jung Lee ( Chungbuk Nat’l Univ.) Collaborators.
A Hidden Local Symmetry Theory of Dileptons in Relativistic Heavy Ion Collisions Gerry Brown* 4/25/08 State University of New York *G. E. Brown, M. Harada,
Restoration of chiral symmetry and vector meson in the generalized hidden local symmetry Munehisa Ohtani (RIKEN) Osamu Morimatsu ( KEK ) Yoshimasa Hidaka(TITech)
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
EFT for π ☆ Chiral Perturbation Theory matching to QCD ⇒ Λ ~ 1 GeV P-wave ππ scattering J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984); NPB.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
Study of sigma meson structure in D meson decay Masayasu Harada (Nagoya Univ.) at International Workshop on New Hadon Spectroscopy (November 21, 2012,
Relating holographic QCD models to hidden local symmetry models Property of X(3872) as a hadronic molecule with negative parity Masayasu Harada “New Hadons”
Meson and Baryon Resonances from the interaction of vector mesons Hidden gauge formalism for vector mesons, pseudoscalars and photons Derivation of chiral.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Radiative Decays involving Scalar Mesons Masayasu Harada (Nagoya Univ.) based Japan-US Workshop on “Electromagnetic Meson Production and Chiral Dynamics”
M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and K.Yamawaki, Phys. Rev. Lett. 87, (2001)
Chiral Approach to the Phi Radiative Decays and the Quark Structure of the Scalar Meson Masayasu Harada (Nagoya Univ.) based HEP-Nuclear Physics Cross.
Study of sigma meson structure in chiral models Masayasu Harada (Nagoya Univ.) at Crossover 2012 (Nagoya University, July 12, 2012) Based on ・ M.H., H.Hoshino.
Structure of Mass Gap Between Two Spin Multiplets
A novel probe of Chiral restoration in nuclear medium
mesons as probes to explore the chiral symmetry in nuclear matter
4. Hidden Local Symmetry Effective (Field) Theory
Nuclear Forces - Lecture 5 -
Understanding DsJ*(2317) and DsJ(2460)
Institute of Modern Physics Chinese Academy of Sciences
Theory on Hadrons in nuclear medium
Presentation transcript:

Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD” (KEK, September 7, 2009)

☆ Discovery of New D Mesons (2003 ~ )

◎ Masses of D sJ (0 +, 1 + ) ⇔ quark model ・・・ predictions by quark model ・・・ experiment new D mesons ・・・ inconsistency with the experiment S.Godfrey and N.Isgur, PRD 32, 189 (1985)

☆ several proposal ◎ 4-quark picture ◎ 2-quark picture chiral models ・ K. Terasaki, PRD 68, (2003) ・ S. Yasui and M. Oka, PRD76, (2007) ・・・ semirelativistic potential model ・ T. Matsuki and T. Morii, PRD 56, 5646 (1997) ・ T. Matsuki, T. Morii and K. Sudoh, PTP 117, 1077 (2007); EPJ A31, 701 (2007) ・・・ new level-classification scheme ・ S. Ishida, M. Ishida, T. Komada, T. Maeda, M. Oda, K. Yamada and I.Yamauchi, AIP Conf. Proc. 717, 716 (2004) ・・・ ・ M.A.Nowak, M.Rho and I.Zahed, PRD48, 4370 (1993) ・ W.A.Bardeen and C.T.Hill, PRD49, 409 (1994) ・ W.A.Bardeen, E.J.Eichten and C.T.Hill PRD 68, (2003) ・・・

☆ “chiral doubling” M.A.Nowak, M.Rho and I.Zahed, PRD48, 4370 (1993) excited states ground states heavy quark symmetry chiral symmetry ◎ Analysis based on the NJL-like model

☆ Our approach chiral doubling + ⇒ Mass splitting ? Hadronic decay widths ? An Effective Model of hadrons based on ・ the Heavy quark symmetry in the heavy sector ・ the chiral symmetry in the light quark sector (Hidden Local symmetry for  and  ) M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004)

Outline 1. Introduction 2. An Effective Model 3. Mass Splitting & Hadronic Decay Processes 4. Chiral doubling in Heavy Baryons 5. Summary

based on chiral symmetry of QCD ρ ・・・ gauge boson of the HLS ◎ Hidden Local Symmetry Theory ・・・ EFT for  and  M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, PRL (1985) M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988) M.H. and K.Yamawaki, Physics Reports 381, 1 (2003) H.Georgi, PRL 63, 1917 (1989); NPB 331, 311 (1990): M.H. and K.Yamawaki, PLB297, 151 (1992) M.Tanabashi, PLB 316, 534 (1993): M.H. and K.Yamawaki, Physics Reports 381, 1 (2003) Systematic low-energy expansion including dynamical  loop expansion ⇔ derivative expansion ◎ Chiral Perturbation Theory with HLS ☆ Effective Lagrangian for the light quark sector

☆ Heavy quark symmetry ・・・ a symmetry of QCD at M Q → ∞ limit ◎ velocity super-selection rule gluon heavy quark The velocity of a heavy quark is not changed by the QCD interaction. ◎ Heavy quark number conservation No pair production of heavy quarks by QCD interaction. ◎ SU(2) spin symmetry QCD interaction cannot flip the spin of heavy quarks.

energy of heavy quark on-shell energy of heavy quark at rest energy of fluctuation mode Fluctuation mode around the On-shell Heavy Quark ・・・ Expansion parameter

☆ QCD Lagrangian (heavy quark sector) ◎ introducing the fluctuation mode

☆ Heavy-Light Mesons (Qq type) Q “Light-quark cloud” (Brown Muck) ・・・ made of light quarks and gluons typical energy scale ~ Λ QCD spin of heavy quark ◎ spin of meson angular momentum carried by “Brown muck” ・ M Q → ∞ limit conservation of J l ⇒ classification of hadrons by J l Q(↑)Q(↓) same J l Heavy Meson Multiplet ・・・ degenerate masses -

☆ Ground states ・・・ J l =1/2 ; J P = (0 -, 1 - ) Pseudoscalar meson P ; Vector meson P* P = ( D 0, D +, D s ) P* = ( D* 0, D* +, D* s ) ・ Bi-spinor field ;  ・・・ light constiuent quark field annihilates heavy mesons (not generate)

◎ Transformation property ◎ Kinetic Lagrangian

☆ Excited states ・・・ J l =1/2 ; J P = (0 +, 1 + ) ◎ Interaction terms are introduced in a similar way.

ΔM = M(0 +,1 + ) – M(0 -,1 - )

☆ Wilsonian matching QCD quarks and gluons EFT for hadrons Λ high energy low energy Bare theory bare mass splitting Δ M( Λ ) Quantum effects through RGE Quantum theory physical mass splitting Δ M M.H. and K.Yamawaki, PRD 64, (2001) matching (perturbative treatment) Both (perturbative) QCD and EFT are applicable integrate out

☆ Comparison with QCD sum rule OPE Energy Physical quantities at low energy QCD sum rule matching at Borel mass scale Borel transformation matching Wilsonian matching RGE in EFT at the maching scale 

☆ Correlators at matching

◎ Matching condition at Q 2 = (M D +  ) 2 ◎ Relation valid at the matching scale 

◎ Numerical Estimation neglect

☆ RGE evolution Good agreement with experiment ! What is the characteristic feature of the chiral doubling ? ⇒ Hadronic Decay processes Quantum Corrections through RGE  meson loop gives a dominant contribution Existence of the Heavy quark symmetry simplifies the calculation.

◎ One pion mode Test of the chiral doubling ! ・ input ・ predictions ☆ Hadronic Decay Processes

r = 0 r = 1 l=0 l=1 D(0 -,1 - ) D(0 +,1 + ) D(1 +,2 + ) 4. Chiral doubling in heavy baryons ・・・ based on the boundstate approach to heavy baryons ☆ Boundstate approach heavy baryons (qqQ type) = heavy meson (q bar Q) bound to nculeon (qqq) as a soliton heavy meson Q q ・ kinematical structure is same as the constituent quark model M.H., F.Sannino, J.Schechter and H.Weigel, PRD56, 4098 (1997)

☆ ground state heavy baryon Binding energy isospin and anglular momentum of light cloud of heavy meson are locked with each other k : D(1 - ) – D(0 - ) –  D(1 + ) – D(1 + ) –  coupling k ~ 0.6 from D(1 - ) → D(0 - ) +  decay k  : D(0 - ) – D(0 - ) – , D(1 - ) – D(1 - ) –  coupling k  = 1 if we assume the vector meson dominance. Hear I take k  = O(1)  1 : force mediated by pion :  1 ~ 0.40 GeV  2 : force mediated by omega meson :  2 ~ 0.26 GeV : K = 0, 1 values of  1 and  1 are given in K.S.Gupta, M.A.Momen, J.Schechter and A. Subbaraman, PRD47, R4835 (1993) V H < 0 for K = 0 : bound V H > 0 for K = 1 : unbound

☆ Determination of k  M(  (1/2+)) = M N + M D(0-,1-) – 1.2 k k  (GeV) M D(0-,1-) = ( M D(0-) + 3 M D(1-) )/4 ~ 1.97 (GeV) k ~ 0.6 from D(1 - ) → D(0 - ) +  decay M(  (1/2+)) ~ (GeV) k  ~ 0.37 ・・・ reasonable value ⇒ Boundstate approach seems to work ! M N ~ 0.94 (GeV) Note : This is very rough estimation in M Q → ∞ limit. We should include 1/M Q corrections.

☆ An excited Heavy baryon : K = 0, 1 k G : D(1 + ) – D(0 + ) –  D(1 + ) – D(1 + ) –  coupling k G  : D(0 + ) – D(0 + ) – , D(1 + ) – D(1 + ) –  coupling ・ chiral doubling of {D(0 -,1 - ), D(0 +,1 + ) } ⇒ k G = k ~ 0.6 ; k G  = k  ・ Binding energy is same as the ground state (K = 0) : V G = V H ・ M(  (1/2-)) – M(  (1/2+)) = M D(0+,1+) – M D(0-,1-) ~ 0.43 GeV ⇒ M(  (1/2-)) ~ 2.72 (GeV) ・  c (1/2-;2595) is unlikely the chiral partner to  c (1/2+;2286) ・  c (1/2-;2595),  c (3/2-;2625) } ・・・ r = 1 boundstate of D(0-,1-) and nucleon  1,  2 : same for ground state in the M Q → ∞ limit.

☆ Application to heavy Pentaquark M(  c (1/2-)) = M N + M D(0-,1-) – 0.4 k – 0.26 k  ~ 2.57 (GeV)  1 ~ 0.40 GeV,  2 ~ 0.26 GeV k ~ 0.6, k  ~ 0.37 K = 1 gives a bound state. cf : M(  c (1/2-)) ~ 2.7 GeV without  contribution. Y.Oh, B.-Y.Park, and D.P.Min, PLB331, 362 (1994) note : CHORUS exp. did not observe  c (2710). Nuclear Physics B 763 (2007) 268–282

・ Effective Lagrangian for D, D, π, ρ based on the heavy quark symmetry and the chiral symmetry ・ matching with the OPE to determine the bare mass splitting at the matching scale  ・ RG evolution to determine the physical mass splitting ~ ◎ Hadronic decay processes ・ D → D π mode ~ Test of the chiral doubling ! D = chiral partner of D ~

☆ Chiral doubling in heavy baryons ・・・ based on the boundstate approach M(  (1/2-)) ~ 2.7 (GeV) : chiral partner to  c (1/2+;2286) ・  c (1/2-;2595) is unlikely the chiral partner to  c (1/2+;2286) ・  c (1/2-;2595),  c (3/2-;2625) } ・・・ r = 1 boundstate of D(0-,1-) and nucleon may be very broad since D(0 +,1 + ) are very broad M(  c (1/2-)) ~ 2.57 (GeV) ☆ Application to Pentaquark