9/11/2015 5:55 AM1 Ethernet and CSMA/CD CSE 6590 Fall 2010.

Slides:



Advertisements
Similar presentations
William Stallings Data and Computer Communications 7 th Edition Chapter 16 High Speed LANs.
Advertisements

Data and Computer Communications Eighth Edition by William Stallings Lecture slides by Lawrie Brown Chapter 16 – High Speed LANs.
Data and Computer Communications
Channel Allocation Protocols. Dynamic Channel Allocation Parameters Station Model. –N independent stations, each acting as a Poisson Process for the purpose.
The ALOHA Protocol “Free for all”: whenever station has a frame to send, it does so. –Station listens for maximum RTT for an ACK. –If no ACK after a specified.
EECC694 - Shaaban #1 lec #5 Spring Data Link In Broadcast Networks: The Media Access Sublayer Broadcast networks with multi-access (or random.
Ethernet – CSMA/CD Review
Fundamentals of Computer Networks ECE 478/578
Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education.
Data and Computer Communications Ninth Edition by William Stallings Chapter 16 – High Speed LANs Data and Computer Communications, Ninth Edition by William.
Lecture 9: Multiple Access Protocols
Communication Networks Lecture 5 NETW 501-L5: NETW 501-L5: Medium Access Control Dr.-Ing. Khaled Shawky Hassan Room: C3-222, ext: 1204,
1 K. Salah Module 4.2: Media Access Control The Media Access Control (MAC) sublayer –Random Access (CSMA), IEEE –Token Passing, IEEE Ch 13-
1 Pertemuan 13 Teknik Akses Jaringan - Random Matakuliah: H0174/Jaringan Komputer Tahun: 2006 Versi: 1/0.
MAC Protocols Media Access Control (who gets the use the channel) zContention-based yALOHA and Slotted ALOHA. yCSMA. yCSMA/CD. TDM and FDM are inefficient.
CS 5253 Workshop 1 MAC Protocol and Traffic Model.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 17 Introduction to Computer Networks.
Chapter 14 LAN Systems Ethernet (CSMA/CD) ALOHA Slotted ALOHA CSMA
Copyright © 2003, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Chapter 6 Multiple Radio Access.
EE 4272Spring, 2003 Chapter 14 LAN Systems Ethernet (CSMA/CD)  ALOHA  Slotted ALOHA  CSMA  CSMA/CD Token Ring /FDDI Fiber Channel  Fiber Channel Protocol.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 16 Introduction to Computer Networks.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
Studying Local Area Networks Via Media Access Control (MAC) SubLayer
FIT 1005 Networks & Data Communications Lecture 9 – High Speed LANs Reference: Chapter 16 Data and Computer Communications Eighth.
Networks: Local Area Networks1 LANs Studying Local Area Networks Via Media Access Control (MAC) SubLayer.
Computer Networks: Local Area Networks 1 LANs Studying Local Area Networks via the Media Access Control (MAC) SubLayer.
Semester EEE449 Computer Networks The Data Link Layer Part 2: Media Access Control En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex,
Shashank Srivastava Motilal Nehru National Institute Of Technology, Allahabad Medium Access Control.
Data Communications and Networking Chapter 9 High Speed LANs and Wireless LANs References: Book Chapters 16 and 17 Data and Computer Communications, 8th.
Ethernet. Ethernet Goals Simplicity Low Cost Compatibility Address flexibility Fairness –All nodes have equal access to the network High speed Stability.
A.S.Tanenbaum, Computer networks, ch4 MAC 1 The Medium Access Control Sublayer Medium Access Control: a means of controlling access to the medium to promote.
McGraw-Hill © The McGraw-Hill Companies, Inc., 2004 Chapter 12 Multiple Access Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction.
Chi-Cheng Lin, Winona State University CS412 Introduction to Computer Networking & Telecommunication Medium Access Control Sublayer.
Chapter 4: Medium Access Control (MAC) Sublayer
Ch. 16 High-Speed LANs The Emergence of High- Speed LANs Trends –Computing power of PCs has continued to grow. –MIS organizations recognize the.
LECTURE9 NET301. DYNAMIC MAC PROTOCOL: CONTENTION PROTOCOL Carrier Sense Multiple Access (CSMA): A protocol in which a node verifies the absence of other.
LOCAL AREA NETWORKS. CSMA Carrier Sense Multiple Access To minimize the chance of collision and, therefore, increase the performance, the CSMA method.
© Janice Regan, CMPT 128, CMPT 371 Data Communications and Networking LANs 2: MAC protocols.
LAN technologies and network topology LANs and shared media Locality of reference Star, bus and ring topologies Medium access control protocols.
Layer 2 Technologies At layer 2 we create and transmit frames over communications channels Format of frames and layer 2 transmission protocols are dependent.
CSCI 465 D ata Communications and Networks Lecture 21 Martin van Bommel CSCI 465 Data Communications & Networks 1.
Data and Computer Communications Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Medium Access Control Sublayer.
جلسه یازدهم شبکه های کامپیوتری به نــــــــــــام خدا.
Medium Access Control Sub Layer
Multiple Access.
Chapter 6 Multiple Radio Access
Ch 12. Multiple Access. Multiple Access for Shared Link Dedicated link – Point-to-point connection is sufficient Shared link – Link is not dedicated –
LECTURE9 NET301 11/5/2015Lect 9 NET DYNAMIC MAC PROTOCOL: CONTENTION PROTOCOL Carrier Sense Multiple Access (CSMA): A protocol in which a node verifies.
EE 122: Lecture 6 Ion Stoica September 13, 2001 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
1 Ethernet CSE 3213 Fall February Introduction Rapid changes in technology designs Broader use of LANs New schemes for high-speed LANs High-speed.
Tel Hai Academic College Department of Computer Science Prof. Reuven Aviv Markov Models for Access Control in Computer Networks Resource: Fayez Gebali,
Chapter 4 The Medum Access Sublayer. MA Sublayer Additional Reference –Local and Metropolitan Area Networks, William Stallings, Prentice Hall, 2000, 6th.
Ch. 16 Ethernet Traditional Ethernet IEEE Medium Access Control –Carrier Sense Multiple Access with Collision Detection (CSMA/CD) –The most.
COMPUTER NETWORKS Data-link Layer (The Medium Access Control Sublayer) MAC Sublayer.
MEDIUM ACCESS CONTROL COSC Design Challenges in WMNs  Hidden terminal problem  Exposed terminal problem  Control and management have to be.
Multiple Access By, B. R. Chandavarkar, CSE Dept., NITK, Surathkal Ref: B. A. Forouzan, 5 th Edition.
Example DLL Protocols 1. High-Level Data Link Control (HDLC).
Data Link Layer Lower Layers Local Area Network Standards
High Speed LANs – Ethernet and Token Ring
Chapter 14 LAN Systems Ethernet (CSMA/CD) ALOHA Slotted ALOHA CSMA
William Stallings Data and Computer Communications
Net301 lecture9 11/5/2015 Lect 9 NET301.
Chapter 12 Multiple Access
Ethernet – CSMA/CD Review
Ethernet – CSMA/CD Review
CARRIER SENSE MULTIPLE ACCESS (CSMA)
Chapter 6 Multiple Radio Access.
Multiple Access Control (MAC) Protocols
Presentation transcript:

9/11/2015 5:55 AM1 Ethernet and CSMA/CD CSE 6590 Fall 2010

9/11/2015 5:55 AM2 Ethernet (CSMA/CD) Carriers Sense Multiple Access with Collision Detection Xerox - Ethernet IEEE 802.3

9/11/2015 5:55 AM3 IEEE802.3 Medium Access Control Random Access — Stations access medium randomly Contention —Stations content for time on medium

9/11/2015 5:55 AM4 ALOHA Packet Radio When station has frame, it sends Station listens (for max round trip time)plus small increment If ACK, fine. If not, retransmit If no ACK after repeated transmissions, give up Frame check sequence (as in HDLC) If frame OK and address matches receiver, send ACK Frame may be damaged by noise or by another station transmitting at the same time (collision) Any overlap of frames causes collision Max utilization 18%

9/11/2015 5:55 AM5 Slotted ALOHA Time in uniform slots equal to frame transmission time Need central clock (or other sync mechanism) Transmission begins at slot boundary Frames either miss or overlap totally Max utilization 37%

9/11/2015 5:55 AM6 CSMA Propagation time is much less than transmission time All stations know that a transmission has started almost immediately First listen for clear medium (carrier sense) If medium idle, transmit If two stations start at the same instant, collision Wait reasonable time (round trip plus ACK contention) No ACK then retransmit Max utilization depends on propagation time (medium length) and frame length —Longer frame and shorter propagation gives better utilization

9/11/2015 5:55 AM7 Nonpersistent CSMA 1.If medium is idle, transmit; otherwise, go to 2 2.If medium is busy, wait amount of time drawn from probability distribution (retransmission delay) and repeat 1 Random delays reduces probability of collisions —Consider two stations become ready to transmit at same time While another transmission is in progress —If both stations delay same time before retrying, both will attempt to transmit at same time Capacity is wasted because medium will remain idle following end of transmission —Even if one or more stations waiting Nonpersistent stations deferential

9/11/2015 5:55 AM8 1-persistent CSMA To avoid idle channel time, 1-persistent protocol used Station wishing to transmit listens and obeys following: 1.If medium idle, transmit; otherwise, go to step 2 2.If medium busy, listen until idle; then transmit immediately 1-persistent stations selfish If two or more stations waiting, collision guaranteed —Gets sorted out after collision

9/11/2015 5:55 AM9 P-persistent CSMA Compromise that attempts to reduce collisions —Like nonpersistent And reduce idle time —Like1-persistent Rules: 1.If medium idle, transmit with probability p, and delay one time unit with probability (1 – p) —Time unit typically maximum propagation delay 2.If medium busy, listen until idle and repeat step 1 3.If transmission is delayed one time unit, repeat step 1 What is an effective value of p?

9/11/2015 5:55 AM10 Value of p? Avoid instability under heavy load n stations waiting to send End of transmission, expected number of stations attempting to transmit is number of stations ready times probability of transmitting —np If np > 1on average there will be a collision Repeated attempts to transmit almost guaranteeing more collisions Retries compete with new transmissions Eventually, all stations trying to send —Continuous collisions; zero throughput So np < 1 for expected peaks of n If heavy load expected, p small However, as p made smaller, stations wait longer At low loads, this gives very long delays

9/11/2015 5:55 AM11 CSMA/CD With CSMA, collision occupies medium for duration of transmission Stations listen whilst transmitting 1.If medium idle, transmit, otherwise, step 2 2.If busy, listen for idle, then transmit 3.If collision detected, jam then cease transmission 4.After jam, wait random time then start from step 1

9/11/2015 5:55 AM12 CSMA/CD Operation

9/11/2015 5:55 AM13 Which Persistence Algorithm? IEEE uses 1-persistent Both nonpersistent and p-persistent have performance problems 1-persistent (p = 1) seems more unstable than p-persistent —Greed of the stations —But wasted time due to collisions is short (if frames long relative to propagation delay —With random backoff, unlikely to collide on next tries —To ensure backoff maintains stability, IEEE and Ethernet use binary exponential backoff

9/11/2015 5:55 AM14 Binary Exponential Backoff Attempt to transmit repeatedly if repeated collisions First 10 attempts, mean value of random delay doubled Value then remains same for 6 further attempts After 16 unsuccessful attempts, station gives up and reports error As congestion increases, stations back off by larger amounts to reduce the probability of collision. 1-persistent algorithm with binary exponential backoff efficient over wide range of loads —Low loads, 1-persistence guarantees station can seize channel once idle —High loads, at least as stable as other techniques Backoff algorithm gives last-in, first-out effect Stations with few collisions transmit first

9/11/2015 5:55 AM15 Collision Detection On baseband bus, collision produces much higher signal voltage than signal Collision detected if cable signal greater than single station signal Signal attenuated over distance Limit distance to 500m (10Base5) or 200m (10Base2) For twisted pair (star-topology) activity on more than one port is collision Special collision presence signal

9/11/2015 5:55 AM16 IEEE Frame Format

9/11/2015 5:55 AM17 Ethernet Standards 10-Mbps (Ethernet) 100-Mbps (Fast Ethernet) Gigabit Ethernet 10-Gbps Ethernet

Reading Data and Computer Communications by William Stallings, Chapter 16 18