EIS - MSSL/NRL EUV Imaging Spectrometer SOT - ISAS/NAOJ Solar Optical Telescope XRT - SAO/ISAS X-ray Telescope FPP - Lockheed/NAOJ Focal Plane Package.

Slides:



Advertisements
Similar presentations
The Science of Solar B Transient phenomena – this aim covers the wide ranges of explosive phenomena observed on the Sun – from small scale flaring in the.
Advertisements

000509EISPDR_SciInvGIs.1 EIS Performance and Operations Louise Harra Mullard Space Science Laboratory University College London.
Hinode/EIS Data Products and Archive Access Jian Sun (MSSL)
COSPAR E July 22, Paris revised for Nobeyama Symposium 2004 October 29, Kiyosato Takeo Kosugi (ISAS/JAXA, Japan)
Solar Wind Acceleration and Waves in the Corona Perspectives for a spectrometer on Solar C/Plan A L. Teriaca Max-Planck-Institut für Sonnensystemforschung.
Initial Results of EIS Shinsuke Imada (NAOJ) EIS Team.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Multi-Wavelength Studies of Flare Activities with Solar-B ASAI Ayumi Kwasan Observatory, Kyoto University Solar-B Science February 4, 2003.
Hinode’s Extreme ultraviolet Imaging Spectrometer (EIS) Data acquisition and calibration primer Presented by Jason Scott.
990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory
Science With the Extreme-ultraviolet Spectrometer (EIS) on Solar-B by G. A. Doschek (with contributions from Harry Warren) presented at the STEREO/Solar-B.
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
000509EISPDR_SciInvGIs.1 EIS Science Goals: The First Three Months…. Louise Harra Mullard Space Science Laboratory University College London.
“The Role of Atomic Physics in Spectroscopic Studies of the Extended Solar Corona” – John Kohl “High Accuracy Atomic Physics in Astronomy”, August.
2006/4/17Extended Solar-B mission onboard control and data handling (data recorder, downlinks, observation tables…) Toshifumi Shimizu ISAS/JAXA.
XRT X-ray Observations of Solar Magnetic Reconnection Sites
MHD Coronal Seismology with SDO/AIA UK Community Views Len Culhane, MSSL with inputs from Valery Nakariakov, Warwick Ineke de Moortel, St Andrews David.
The Hinode EUV Imaging Spectrometer: In-Orbit Performance and Early Results STEREO-SECCHI Consortium Meeting Paris, 5 th – 8 th March, 2007 L. Culhane,
Solar-B XRT XRT-1 The Science and Capability of the Solar-B / X-Ray Telescope Solar-B XRT Presenter: Ed DeLuca Smithsonian Astrophysical Observatory.
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
Magnetic Field Measurements from Solar-B Information shown here is from Solar-B team (including Drs Ichimoto, Kosugi, Shibata, Tarbell, and Tsuneta)
1.B – Solar Dynamo 1.C – Global Circulation 1.D – Irradiance Sources 1.H – Far-side Imaging 1.F – Solar Subsurface Weather 1.E – Coronal Magnetic Field.
DOPPLER DOPPLER A Space Weather Doppler Imager Mission Concept Exploration Science Objectives What are the most relevant observational signatures of flare,
Solar-B Science Objectives - Overview of the Mission - Kazunari Shibata (Kyoto Univ.)
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
New Views of the Solar Corona with Hinode X-Ray Telescope (XRT) Taro Sakao (ISAS/JAXA) and the XRT Team (ISAS/JAXA, SAO, NAOJ, NASA/MSFC)
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
Solar-B Mission Preparation Len Culhane – UK EIS Principal Investigator Louise Harra – UK Project Scientist David Williams – UK EIS Chief Observer Mullard.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
1 Future solar missions (Based on the summary by R.A. Harrison) S. Kamio
EUV Spectroscopy. High-resolution solar EUV spectroscopy.
Kazunari Shibata Kwasan and Hida Observatories Kyoto University
The Atmospheric Imaging Assembly Measuring the Sun’s Surface, Chomosphere, Transition Region, and Corona using visible and extreme Ultra- violet light.
Hinode: A New Solar Observatory in Space H. Hara ( NAOJ/NINS) and the Hinode team 2007 Dec 8.
The Sun and the Heliosphere: some basic concepts…
By: Kiana and Meagan. Purpose  To measure solar magnetic fields  To understand how energy generated by magnetic-field changes in the lower solar atmosphere.
High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser 1, P. Gömöry 1,2, J. Rybák 2, A.M. Veronig 1, M. Temmer 1, P.
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
YunNan One Meter Infrared Solar Tower Jun Lin. Why is YNST? After Solar-B launch, what can we do by using of ground-based telescope ? Detailed chromosphere.
18-April-2006XRT Team1 Initial Science Observations Solar-B XRT Ed DeLuca for the XRT Team.
2005/11/086th Solar-B Science Supersonic downflows in the photosphere discovered in sunspot moat regions T. Shimizu (ISAS/JAXA, Japan),
TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team.
Science - Coronal heating - Coronal structure / dynamics - Elementary processes in Magnetic Reconnection Mission instruments - Optical Telescope / Vector.
Solar-B Global DataGrid Update for AstroGrid SAG 10 RALMSSL Tim Folkes Elizabeth Auden Jens Jensen Paul Lamb Matthew WildMatthew Whillock Len Culhane Elizabeth.
Observations of Moreton waves with Solar-B NARUKAGE Noriyuki Department of Astronomy, Kyoto Univ / Kwasan and Hida Observatories M2 The 4 th Solar-B Science.
Solar-B Mission Status, Operations and Planning Len Culhane – UK EIS Principal Investigator Louise Harra – UK Project Scientist David Williams – UK EIS.
EUV Imaging Spectrometer (EIS): Instrument Checkout, Performance Verification and Initial 90 Day Observing Plan Extended Solar Optical Telescope Meeting.
Comments for a preliminary EIS science plan H. Hara 2005 Oct 31 For the science meeting at ISAS.
Joint Planning of SOT/XRT/EIS Observations Outline of 90 Day Initial Observing Plans T. Shimizu, L Culhane.
Spectroscopic Detection of Reconnection Evidence with Solar-B II. Signature of Flows in MHD simulation Hiroaki ISOBE P.F. Chen *, D. H. Brooks, D. Shiota,
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Spectroscopic observations of CMEs Hui Tian Harvard-Smithsonian Center for Astrophysics Collaborators: Scott W. McIntosh, Steve Tomczyk New England Space.
Flare Prediction and the Background Corona Coronal Diagnostic Spectrometer Wolter-Schwarzschild Type 2 telescope Two separate spectrometers- the Normal.
XRT and EIS Observations of Reconnection associated Phenomena D. Shiota, H. Isobe, D. H. Brooks, P. F. Chen, and K. Shibata
Model instruments baseline specification and key open issues EUV/FUV High-Throughput Spectroscopic Telescope Toshifumi Shimizu (ISAS/JAXA) SCSDM-4.
020625_ExtReview_Nexus.1 NEXUS / SDO / ILWS SDO Science goals: How does solar variability directly affect life on Earth? SDO areas of interest: –Solar.
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
2005/11/15STEREO/Solar-B Workshop1 Solar-B X-ray Telescope (XRT) R. Kano (NAOJ) and XRT Team XRT.
Observations of the Thermal and Dynamic Evolution of a Solar Microflare J. W. Brosius (Catholic U. at NASA’s GSFC) G. D. Holman (NASA/GSFC)
On the spectroscopic detection of magnetic reconnection evidence with Solar B – I. Emission line selection and atomic physics issues P. F. Chen 1,2, H.
The X-Ray Telescope aboard Solar-B: An Overview Taro Sakao (ISAS/JAXA) and The XRT Team.
Joint Planning of SOT/XRT/EIS Observations Outline of 90 Day Initial Observing Plans T. Shimizu, L Culhane.
Using Solar-B EIS – lessons from SOHO/CDS Peter Young*, Andrzej Fludra CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, U.K.
Spectroscopic Observations with SolarB-EIS Helen E. Mason DAMTP, Centre for Mathematical Sciences Giulio Del Zanna, MSSL.
November 18, 2008Jonathan Cirtain SCIENCE & MISSION SYSTEMS Solar-C Plan ‘A’ Coronal observations Jonathan Cirtain MSFC/NASA November 18, 2008.
The Solar-B Mission Len Culhane – EIS Principal Investigator
Planning Flare Observations for Hinode/EIS
ISAS Solar Physics Yohkoh (1991- ) Hionotori ( )
Slit and Slot Interchange
Presentation transcript:

EIS - MSSL/NRL EUV Imaging Spectrometer SOT - ISAS/NAOJ Solar Optical Telescope XRT - SAO/ISAS X-ray Telescope FPP - Lockheed/NAOJ Focal Plane Package

Mission Characteristics Launch date: August 2006 Launch vehicle: ISAS MV Mission lifetime: 3 years Orbit: Polar, sun synchronous Inclination: 97.9 degrees Altitude: 600 km. Mass: 900 kg

Large Effective Area in two EUV bands: Å and Å –Multi-layer Mirror (15 cm dia ) and Grating; both with optimised Mo/Si Coatings –CCD camera; Two 2048 x 1024 high QE back illuminated CCDs Spatial resolution: 1 arcsec pixels/2 arcsec resolution Line spectroscopy with ~ 25 km/s pixel sampling Field of View : –Raster: 6 arcmin×8.5 arcmin; –FOV centre moveable E – W by ± 15 arcmin Wide temperature coverage: log T = 4.7, 5.4, K Simultaneous observation of up to 25 lines EIS - Instrument Features

Slit Exchange Mechanism Primary Mirror Entrance Filter Concave Grating Filter CCDs Shutter 1939 mm 1440 mm 1000 mm EIS Optical Diagram Grating Front Baffle Entrance Filter Primary Mirror CCD Camera

Installation of Key Subsystems in Structure Primary Mirror Grating Entrance Filter Holder Dual CCD Camera Filter Holder Installed EIS Instrument Completed

Observables Observation of single lines –Line intensity and profile –Line shift (  ) → Doppler motion –Line width (  w) and temperature → Nonthermal motion Observation of line pair ratios –Temperature –Density Observation of multiple lines –Differential emission measure  ww

Emission Lines on EIS CCDs 1024 pixels

Four slit/slot selections available EUV line spectroscopy - Slits - 1 arcsec  512 arcsec slit - best spectral resolution - 2 arcsec  512 arcsec slit - higher throughput EUV Imaging – Slots –Overlappogram; velocity information overlapped –40 arcsec  512 arcsec slot - imaging with little overlap –250 arcsec  512 arcsec slot - detecting transient events Slit and Slot Interchange

EIS Field-of-View (FOV) 360  512  EIS Slit Maximum FOV for raster observation 512  900  Raster-scan range Shift of FOV center with coarse-mirror motion 250  slot 40  slot 512 

EIS Sensitivity IonWavelength (A) logTN photons ARM2-Flare Fe X Fe XII / /21105/130 Fe XXI Fe XI / / 15110/47 Fe XXIV  10 4 Fe XII Ca XVII  10 3 Fe XII Fe XII / /16538/133 Fe XIII Fe XIII Fe XIII / /2038/114 Detected photons per 1  1  area of the sun per 1 sec exposure. IonWavelength (A) logTN photons ARM2-Flare Fe XVI Fe XXII Fe XVII Fe XXVI  10 3 He II  10 3 Si X Fe XVI Fe XXIII  10 3 Fe XIV Fe XIV Fe XIV Fe XV  10 3 AR: active region

Expected Accuracy of Velocity Doppler velocity Line width Bright AR line Flare line Photons (1  1  area) -1 sec -1 Photons (1  1  area) -1 (10sec) -1 Number of detected photons

Processed Science Data Products Intensity Maps (T e, n e ):Intensity Maps (T e, n e ): – images of region being rastered from the zeroth moments of strongest spectral lines Doppler Shift Maps (Bulk Velocity):Doppler Shift Maps (Bulk Velocity): – images of region being rastered from first moments of the strongest spectral lines Line Width Maps (NT Velocity):Line Width Maps (NT Velocity): – images of region being rastered from second moments of the strongest spectral lines Norikura coronagraph observations of all three of these parameters

The first 3 months…. atial determination of evaporation and turbulence in a flareFlare trigger and dynamics: Spatial determination of evaporation and turbulence in a flare patial determination of the velocity field in active region loopsActive region heating: Spatial determination of the velocity field in active region loops easurement of intensity and velocity field at a coronal hole boundaryCoronal Hole Boundaries: Measurement of intensity and velocity field at a coronal hole boundary etermination of the relationship between different categories of quiet Sun events.Quiet Sun Brightenings: Determination of the relationship between different categories of quiet Sun events.

Active Regions connect the photospheric velocity field to the signatures of coronal heating. This will allow us to determine the dominant heating mechanism in active regions, and will be extended to other coronal brightenings. search for evidence of waves in loops and make use of observations for coronal seismology study dynamic phenomena within active region loops.

Quiet Sun link quiet Sun brightenings and explosive events to the magnetic field changes in the network and inter-network to understand the origin of these events. determine the variation of explosive events and blinkers with temperature. Search for evidence of reconnection and flows at junctions between open and closed magnetic field at coronal hole boundaries. Determine the impact of quiet Sun events on larger scale structures within the corona. Determine physical size scales using density diagnostics.

Solar Flares determine the source and location of flaring and identify the source of energy for flares. EIS will measure the velocity fields and observe coronal structures with temperature information. Hence will allow us to address the trigger mechanism. detection of reconnection inflows, outflows and the associated turbulence which play the pivotal role in flare particle acceleration.

Coronal Mass Ejections determine the location of dimming (and the subsequent velocities) in various magnetic configurations allowing us to determine the magnetic environment that leads to a coronal mass ejection. The situations to be studied include filaments, flaring active regions and trans-equatorial loops.

Large Scale Structures determine the temperature and velocity structure in a coronal streamer determine the velocity field and temperature change of a trans-equatorial loop, and search for evidence of large-scale reconnection. Using a low-latitude coronal hole, search for evidence of the fast solar wind.

Information is maintained on our website; The EIS science planning guide shows details of the 3 month plan studies including line choices, which slit/slot, FOV etc. The planning software will be released into SSW in the autumn. Quicklook software etc. is already in SSW. Details are on the website. The next solar-B science meeting will be in Kyoto in November.