Chapter 10 Elasticity & Oscillations. MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised 7-12-102 Elasticity and Oscillations Elastic Deformations.

Slides:



Advertisements
Similar presentations
Oscillations and Simple Harmonic Motion:
Advertisements

Simple Harmonic Motion and Elasticity
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 10: Elasticity and Oscillations.
Ch 3.8: Mechanical & Electrical Vibrations
Chapter 5 Kinetic Energy
FCI. Prof. Nabila.M.Hassan Faculty of Computer and Information Basic Science department 2013/ FCI.
Adapted from Holt book on physics
Chapter 13 VibrationsandWaves. Hooke’s Law F s = - k x F s = - k x F s is the spring force F s is the spring force k is the spring constant k is the spring.
Simple Harmonic Motion
Simple Harmonic Motion
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Spring Forces and Simple Harmonic Motion
Oscillation.
Cutnell/Johnson Physics 9th edition
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Chapter 15 Oscillatory Motion.
Oscillations Phys101 Lectures 28, 29 Key points:
13. Oscillatory Motion. Oscillatory Motion 3 If one displaces a system from a position of stable equilibrium the system will move back and forth, that.
Simple Harmonic Motion AP Physics 1. Simple Harmonic Motion Back and forth motion that is caused by a force that is directly proportional to the displacement.
Simple Harmonic Motion
Physics 6B Oscillations Prepared by Vince Zaccone
Chapter 9 Static Equilibrium; Elasticity and Fracture
Periodic Motion - 1.
Chapter 12 Oscillatory Motion. Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after.
Chapter 12 Oscillatory Motion.
Simple Harmonic Motion and Elasticity
Simple Harmonic Motion and Elasticity
Ch 10. Harmonic Motion & Elasticity
Simple Harmonic Motion
Chapter 13 VibrationsandWaves. Hooke’s Law F s = - k x F s = - k x F s is the spring force F s is the spring force k is the spring constant k is the spring.
Simple Harmonic Motion Chapter 12 Section 1. Periodic Motion A repeated motion is what describes Periodic Motion Examples:  Swinging on a playground.
Chapter 11 - Simple Harmonic Motion
Vibrations and Waves Hooke’s Law Elastic Potential Energy Comparing SHM with Uniform Circular Motion Position, Velocity and Acceleration.
Simple Pendulum A simple pendulum also exhibits periodic motion A simple pendulum consists of an object of mass m suspended by a light string or.
Vibrations and Waves m Physics 2053 Lecture Notes Vibrations and Waves.
Chapter 15 Oscillatory Motion.
Chapter 15 Oscillatory Motion.
Chapter 15 Oscillatory Motion. Intro Periodic Motion- the motion of an object that regularly repeats There is special case of periodic motion in which.
Copyright © 2009 Pearson Education, Inc. Chapter 14 Oscillations.
Chapter 15 Oscillatory Motion.
Copyright © 2009 Pearson Education, Inc. Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Simple Pendulum Lecture.
L 20 – Vibration, Waves and Sound -1 Resonance Tacoma Narrows Bridge Collapse The pendulum springs harmonic motion mechanical waves sound waves musical.
Chapter 15 Oscillatory Motion. Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after.
Simple Harmonic Motion and Elasticity The Ideal Spring and Simple Harmonic Motion spring constant Units: N/m.
Periodic Motion 1 Chapter 15 Oscillatory Motion April 17 th, 2006.
L 20 – Vibration, Waves and Sound -1 Resonance The pendulum Springs Harmonic motion Mechanical waves Sound waves Musical instruments Tacoma Narrows Bridge.
Chapter 15 Oscillatory Motion.
Periodic Motion What is periodic motion?
AP Physics B: Ch.10 - Elasticity and Simple Harmonic Motion Reading Assignment Cutnell and Johnson, Physics Chapter 10.
Chapter 15 Oscillatory Motion.
Simple Harmonic Motion
Monday, Nov. 18, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #18 Monday, Nov. 18, 2002 Dr. Jaehoon Yu 1.Elastic Properties.
Periodic Motions.
Oscillations. Periodic Motion Periodic motion is motion of an object that regularly returns to a given position after a fixed time interval A special.
Whenever the force acting on an object is: Whenever the force acting on an object is: 1. Proportional to the displacement 2. In the opposite direction,
Chapter 16 Vibrations Motion. Vibrations/Oscillations Object at the end of a spring Object at the end of a spring Tuning fork Tuning fork Pendulum Pendulum.
Chapter 14 Springs A TRAMPOLINE exerts a restoring force on the jumper that is directly proportional to the average force required to displace the mat.
Any regular vibrations or oscillations that repeat the same movement on either side of the equilibrium position and are a result of a restoring force Simple.
PHY 151: Lecture Motion of an Object attached to a Spring 12.2 Particle in Simple Harmonic Motion 12.3 Energy of the Simple Harmonic Oscillator.
Assuming both these system are in frictionless environments, what do they have in common? Energy is conserved Speed is constantly changing Movement would.
Chapter 10 Waves and Vibrations Simple Harmonic Motion SHM.
PHY 151: Lecture Motion of an Object attached to a Spring 15.2 Particle in Simple Harmonic Motion 15.3 Energy of the Simple Harmonic Oscillator.
L 20 – Vibration, Waves and Sound-1
Voronkov Vladimir Vasilyevich
Chapter 10: Oscillations
Chapter 10 Elasticity & Oscillations
PHYS 1443 – Section 003 Lecture #19
An elevator supported by a single cable descends a shaft at a constant speed. The only forces acting on the elevator are the tension in the cable.
Simple Harmonic Motion and Wave Interactions
Presentation transcript:

Chapter 10 Elasticity & Oscillations

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Elasticity and Oscillations Elastic Deformations Hooke’s Law Stress and Strain Shear Deformations Volume Deformations Simple Harmonic Motion The Pendulum Damped Oscillations, Forced Oscillations, and Resonance

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Elastic Deformation of Solids A deformation is the change in size or shape of an object. An elastic object is one that returns to its original size and shape after contact forces have been removed. If the forces acting on the object are too large, the object can be permanently distorted.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Hooke’s Law F F Apply a force to both ends of a long wire. These forces will stretch the wire from length L to L+  L.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Define: The fractional change in length Force per unit cross- sectional area Stress and Strain Stretching ==> Tensile Stress Squeezing ==> Compressive Stress

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Hooke’s Law (F  x) can be written in terms of stress and strain (stress  strain). The spring constant k is now Y is called Young’s modulus and is a measure of an object’s stiffness. Hooke’s Law holds for an object to a point called the proportional limit. Hooke’s Law

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised A steel beam is placed vertically in the basement of a building to keep the floor above from sagging. The load on the beam is 5.8  10 4 N and the length of the beam is 2.5 m, and the cross-sectional area of the beam is 7.5  10  3 m 2. Find the vertical compression of the beam. Force of floor on beam Force of ceiling on beam For steel Y = 200  10 9 Pa. Compressive Stress

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Example (text problem 10.7): A 0.50 m long guitar string, of cross-sectional area 1.0  10  6 m 2, has a Young’s modulus of 2.0  10 9 Pa. By how much must you stretch a guitar string to obtain a tension of 20 N? Tensile Stress

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Beyond Hooke’s Law Elastic Limit If the stress on an object exceeds the elastic limit, then the object will not return to its original length. Breaking Point An object will fracture if the stress exceeds the breaking point. The ratio of maximum load to the original cross-sectional area is called tensile strength.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The ultimate strength of a material is the maximum stress that it can withstand before breaking. Ultimate Strength Materials support compressive stress better than tensile stress

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised An acrobat of mass 55 kg is going to hang by her teeth from a steel wire and she does not want the wire to stretch beyond its elastic limit. The elastic limit for the wire is 2.5  10 8 Pa. What is the minimum diameter the wire should have to support her? Want

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Different Representations Original equation Fractional change Change in length New length

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Shear Deformations A shear deformation occurs when two forces are applied on opposite surfaces of an object.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Hooke’s law (stress  strain) for shear deformations is Define: where S is the shear modulus Stress and Strain

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Example (text problem 10.25): The upper surface of a cube of gelatin, 5.0 cm on a side, is displaced by 0.64 cm by a tangential force. The shear modulus of the gelatin is 940 Pa. What is the magnitude of the tangential force? F F From Hooke’s Law:

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised An object completely submerged in a fluid will be squeezed on all sides. The result is a volume strain; Volume Deformations

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised For a volume deformation, Hooke’s Law is (stress  strain): where B is called the bulk modulus. The bulk modulus is a measure of how easy a material is to compress. Volume Deformations

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised An anchor, made of cast iron of bulk modulus 60.0  10 9 Pa and a volume of m 3, is lowered over the side of a ship to the bottom of the harbor where the pressure is greater than sea level pressure by 1.75  10 6 Pa. Find the change in the volume of the anchor.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Examples I-beam Arch - Keystone Flying Buttress

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Deformations Summary Table Bulk Modulus (B) Shear modulus (S)Young’s modulus (Y) Constant of proportionality Fractional change in volume Ratio of the relative displacement to the separation of the two parallel surfaces Fractional change in length Strain PressureShear force divided by the area of the surface on which it acts Force per unit cross-sectional area Stress Volume Shear Tensile or compressive

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Simple Harmonic Motion Simple harmonic motion (SHM) occurs when the restoring force (the force directed toward a stable equilibrium point) is proportional to the displacement from equilibrium.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Characteristics of SHM Repetitive motion through a central equilibrium point. Symmetry of maximum displacement. Period of each cycle is constant. Force causing the motion is directed toward the equilibrium point (minus sign). F directly proportional to the displacement from equilibrium. Acceleration = - ω 2 x Displacement

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The motion of a mass on a spring is an example of SHM. The restoring force is F =  kx. x Equilibrium position x y The Spring

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Assuming the table is frictionless: Also, Equation of Motion & Energy Classic form for SHM

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Spring Potential Energy

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised At the equilibrium point x = 0 so a = 0 too. When the stretch is a maximum, a will be a maximum too. The velocity at the end points will be zero, and it is a maximum at the equilibrium point. Simple Harmonic Motion

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised What About Gravity? When a mass-spring system is oriented vertically, it will exhibit SHM with the same period and frequency as a horizontally placed system. The effect of gravity is cancelled out.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Spring Compensates for Gravity

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Representing Simple Harmonic Motion

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised A simple harmonic oscillator can be described mathematically by: Or by: where A is the amplitude of the motion, the maximum displacement from equilibrium, A  = v max, and A  2 = a max.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Linear Motion - Circular Functions

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Projection of Circular Motion

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The period of oscillation is where  is the angular frequency of the oscillations, k is the spring constant and m is the mass of the block. The Period and the Angular Frequency

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The period of oscillation of an object in an ideal mass-spring system is 0.50 sec and the amplitude is 5.0 cm. What is the speed at the equilibrium point? At equilibrium x = 0: Since E = constant, at equilibrium (x = 0) the KE must be a maximum. Here v = v max = A .

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The amplitude A is given, but  is not. Example continued:

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The diaphragm of a speaker has a mass of 50.0 g and responds to a signal of 2.0 kHz by moving back and forth with an amplitude of 1.8  10  4 m at that frequency. (a) What is the maximum force acting on the diaphragm? The value is F max =1400 N.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised (b) What is the mechanical energy of the diaphragm? Since mechanical energy is conserved, E = K max = U max. The value of k is unknown so use K max. The value is K max = 0.13 J. Example continued:

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Example (text problem 10.47): The displacement of an object in SHM is given by: What is the frequency of the oscillations? Comparing to y(t) = A sin  t gives A = 8.00 cm and  = 1.57 rads/sec. The frequency is:

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Other quantities can also be determined: The period of the motion is Example continued:

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The Pendulum A simple pendulum is constructed by attaching a mass to a thin rod or a light string. We will also assume that the amplitude of the oscillations is small.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The pendulum is best described using polar coordinates. The origin is at the pivot point. The coordinates are (r, φ). The r-coordinate points from the origin along the rod. The φ- coordinate is perpendicualr to the rod and is positive in the counterclock wise direction.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Apply Newton’s 2 nd Law to the pendulum bob. If we assume that φ <<1 rad, then sin φ  φ and cos φ  1, the angular frequency of oscillations is then: The period of oscillations is

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Example (text problem 10.60): A clock has a pendulum that performs one full swing every 1.0 sec. The object at the end of the string weighs 10.0 N. What is the length of the pendulum? Solving for L:

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The gravitational potential energy of a pendulum is U = mgy. Taking y = 0 at the lowest point of the swing, show that y = L(1-cos  ).  L y=0 L Lcos 

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised A physical pendulum is any rigid object that is free to oscillate about some fixed axis. The period of oscillation of a physical pendulum is not necessarily the same as that of a simple pendulum. The Physical Pendulum

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The Physical Pendulum

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Damped Oscillations When dissipative forces such as friction are not negligible, the amplitude of oscillations will decrease with time. The oscillations are damped.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Graphical representations of damped oscillations:

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised  Overdamped: The system returns to equilibrium without oscillating. Larger values of the damping the return to equilibrium slower.  Critically damped : The system returns to equilibrium as quickly as possible without oscillating. This is often desired for the damping of systems such as doors.  Underdamped : The system oscillates (with a slightly different frequency than the undamped case) with the amplitude gradually decreasing to zero. Source: Wikipedia Damped Oscillations

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Damped Oscillations The larger the damping the more difficult it is to assign a frequency to the oscillation.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Forced Oscillations and Resonance A force can be applied periodically to a damped oscillator (a forced oscillation). When the force is applied at the natural frequency of the system, the amplitude of the oscillations will be a maximum. This condition is called resonance.

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Tacoma Narrows Bridge Nov. 7, 1940

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Tacoma Narrows Bridge Nov. 7, 1940

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised The first Tacoma Narrows Bridge opened to traffic on July 1, It collapsed four months later on November 7, 1940, at 11:00 AM (Pacific time) due to a physical phenomenon known as aeroelastic flutter caused by a 67 kilometres per hour (42 mph) wind. The bridge collapse had lasting effects on science and engineering. In many undergraduate physics texts the event is presented as an example of elementary forced resonance with the wind providing an external periodic frequency that matched the natural structural frequency (even though the real cause of the bridge's failure was aeroelastic flutter[1]). Its failure also boosted research in the field of bridge aerodynamics/ aeroelastics which have themselves influenced the designs of all the world's great long-span bridges built since Wikipedia Tacoma Narrows Bridge

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Chapter 10: Elasticity & Oscillations Elastic deformations of solids Hooke's law for tensile and compressive forces Beyond Hooke's law Shear and volume deformations Simple harmonic motion The period and frequency for SHM Graphical analysis of SHM The pendulum Damped oscillations Forced oscillations and resonance

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Extra

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Aeroelasticity is the science which studies the interactions among inertial, elastic, and aerodynamic forces. It was defined by Arthur Collar in 1947 as "the study of the mutual interaction that takes place within the triangle of the inertial, elastic, and aerodynamic forces acting on structural members exposed to an airstream, and the influence of this study on design." Aeroelasticity

MFMcGraw-PHY1401Chap 10d - Elas & Vibrations - Revised Flutter Flutter is a self-feeding and potentially destructive vibration where aerodynamic forces on an object couple with a structure's natural mode of vibration to produce rapid periodic motion. Flutter can occur in any object within a strong fluid flow, under the conditions that a positive feedback occurs between the structure's natural vibration and the aerodynamic forces. That is, that the vibrational movement of the object increases an aerodynamic load which in turn drives the object to move further. If the energy during the period of aerodynamic excitation is larger than the natural damping of the system, the level of vibration will increase, resulting in self-exciting oscillation. The vibration levels can thus build up and are only limited when the aerodynamic or mechanical damping of the object match the energy input, this often results in large amplitudes and can lead to rapid failure. Because of this, structures exposed to aerodynamic forces - including wings, aerofoils, but also chimneys and bridges - are designed carefully within known parameters to avoid flutter. It is however not always a destructive force; recent progress has been made in small scale (table top) wind generators for underserved communities in developing countries, designed specifically to take advantage of this effect. In complex structures where both the aerodynamics and the mechanical properties of the structure are not fully understood flutter can only be discounted through detailed testing. Even changing the mass distribution of an aircraft or the stiffness of one component can induce flutter in an apparently unrelated aerodynamic component. At its mildest this can appear as a "buzz" in the aircraft structure, but at its most violent it can develop uncontrollably with great speed and cause serious damage to or the destruction of the aircraft. In some cases, automatic control systems have been demonstrated to help prevent or limit flutter related structural vibration. Flutter can also occur on structures other than aircraft. One famous example of flutter phenomena is the collapse of the original Tacoma Narrows Bridge. Aeroelastic Flutter