M. Girod, F.Chappert, CEA Bruyères-le-Châtel Neutron Matter and Binding Energies with a New Gogny Force.

Slides:



Advertisements
Similar presentations
Nuclear Symmetry energy and Intermediate heavy ion reactions R. Wada, M. Huang, W. Lin, X. Liu IMP, CAS.
Advertisements

Spectroscopy at the Particle Threshold H. Lenske 1.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Coulomb excitation with radioactive ion beams
CEA DSM Irfu 14 Oct Benoît Avez - [Pairing vibrations with TDHFB] - ESNT Workshop1 Pairing vibrations study in the Time-Dependent Hartree-Fock Bogoliubov.
Isospin dependence and effective forces of the Relativistic Mean Field Model Georgios A. Lalazissis Aristotle University of Thessaloniki, Greece Georgios.
Testing shell model on nuclei
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
Lawrence Livermore National Laboratory UCRL-XXXX Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA This work performed under.
Towards a Universal Energy Density Functional Towards a Universal Energy Density Functional Study of Odd-Mass Nuclei in EDF Theory N. Schunck University.
Finite Nuclei and Nuclear Matter in Relativistic Hartree-Fock Approach Long Wenhui 1,2, Nguyen Van Giai 2, Meng Jie 1 1 School of Physics, Peking University,
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
Single Particle Energies
9/28/ :01 (00) PAIRING PROPERTIES OF SUPERHEAVY NUCLEI A. Staszczak, J. Dobaczewski and W. Nazarewicz (KFT UMCS) (IFT UW) (ORNL & UT)
NPSC-2003Gabriela Popa Microscopic interpretation of the excited K  = 0 +, 2 + bands of deformed nuclei Gabriela Popa Rochester Institute of Technology.
Systematics of the First 2 + Excitation in Spherical Nuclei with Skyrme-QRPA J. Terasaki Univ. North Carolina at Chapel Hill 1.Introduction 2.Procedure.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
Terminating states as a unique laboratory for testing nuclear energy density functional Maciej Zalewski, UW under supervision of W. Satuła Kazimierz Dolny,
Fission fragment properties at scission:
SH nuclei – structure, limits of stability & high-K ground-states/isomers 1.Equilibrium shapes 2.Fission barriers 3.Q alpha of Z= ( with odd and.
CEA Bruyères-le-Châtel Kazimierz sept 2005, Poland Variational Multiparticle-Multihole Mixing with the D1S Gogny force N. Pillet (a), J.-F. Berger (a),
Introduction to Nuclear Physics
CEA Bruyères-le-ChâtelESNT 2007 Fission fragment properties at scission: An analysis with the Gogny force J.F. Berger J.P. Delaroche N. Dubray CEA Bruyères-le-Châtel.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Binding Energy B tot (A,Z) = [ Zm H + Nm n - m(A,Z) ] c 2 B  m.
Etat de lieux de la QRPA = state of the art of the QRPA calculations G. Colò / E. Khan Espace de Structure Nucléaire Théorique SPhN, Saclay, January 11-12,
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
F. Sammarruca, University of Idaho Supported in part by the US Department of Energy. From Neutron Skins to Neutron Stars to Nuclear.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
KITPC, Jun 14th, 2012 Spin-Isospin excitations as quantitative constraint for the Skyrme tensor force Chunlin Bai Department of Physics, Sichuan University.
A new statistical scission-point model fed with microscopic ingredients Sophie Heinrich CEA/DAM-Dif/DPTA/Service de Physique Nucléaire CEA/DAM-Dif/DPTA/Service.
ESNT Saclay February 2, Structure properties of even-even actinides at normal- and super-deformed shapes J.P. Delaroche, M. Girod, H. Goutte, J.
Nuclear Collective Excitation in a Femi-Liquid Model Bao-Xi SUN Beijing University of Technology KITPC, Beijing.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France.
Héloïse Goutte CERN Summer student program 2009 Introduction to Nuclear physics; The nucleus a complex system Héloïse Goutte CEA, DAM, DIF
Fission Collective Dynamics in a Microscopic Framework Kazimierz Sept 2005 H. Goutte, J.F. Berger, D. Gogny CEA Bruyères-le-Châtel Fission dynamics with.
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
21 January 2010ITP Beijing1 Neutron star cooling: a challenge to the nuclear mean field Nguyen Van Giai IPN, Université Paris-Sud, Orsay 2.
Variational multiparticle-multihole configuration mixing approach
© 2003 By Default! A Free sample background from Slide 1  nuclear structure studies nn uclear structure studies Who am.
Effect of tensor on halo and subshell structure in Ne, O and Mg isotopes Chen Qiu Supervisor: Prof. Xian-rong Zhou Xiamen University April. 13, 2012.
First Gogny conference, TGCC December 2015 DAM, DIF, S. Péru QRPA with the Gogny force applied to spherical and deformed nuclei M. Dupuis, S. Goriely,
Tailoring new interactions in the nuclear many-body problem for beyond- mean-field models Marcella Grasso Tribute to Daniel Gogny.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Faddeev Calculation for Neutron-Rich Nuclei Eizo Uzu (Tokyo Univ. of Science) Collaborators Masahiro Yamaguchi (RCNP) Hiroyuki Kamada (Kyusyu Inst. Tech.)
Global fitting of pairing density functional; the isoscalar-density dependence revisited Masayuki YAMAGAMI (University of Aizu) Motivation Construction.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Contribution to nuclear.
Global nuclear structure aspects of tensor interaction Wojciech Satuła in collaboration with J.Dobaczewski, P. Olbratowski, M.Rafalski, T.R. Werner, R.A.
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Pairing Correlation in neutron-rich nuclei
Shalom Shlomo Cyclotron Institute Texas A&M University
Active lines of development in microscopic studies of
Nuclear Binding Energy
Regularized delta interactions for nuclear structure calculations
Structure and dynamics from the time-dependent Hartree-Fock model
Low energy nuclear collective modes and excitations
Microscopic studies of the fission process
Daisuke ABE Department of Physics, University of Tokyo
Medium polarization effects and transfer reactions in halo nuclei
Parametrisation of Binding Energies
Superheavy nuclei: relativistic mean field outlook
Department of Physics, Sichuan University
Magnetic dipole excitation and its sum rule for valence nucleon pair
Presentation transcript:

M. Girod, F.Chappert, CEA Bruyères-le-Châtel Neutron Matter and Binding Energies with a New Gogny Force

Purpose of our study,  0 =0.16 fm -3 D1S Gogny force does not reproduce the EOS for neutron matter Fit NM with Skyrme forces: PhD E. Chabanat Sly4

I) The fit to Neutron Matter EOS New Gogny force: D1N II) Properties of D1N in nuclei Contents

I) The fit to Neutron Matter EOS New Gogny force: D1N

The Gogny force 14 parameters (Wi, Bi, Hi, Mi,  i ) for i=1,2; t 0, x 0,  W ls

14 parameters 14 parameters 14 equations B.E. and radii: 16 O et 90 Zr G.S. properties 2 pairing matrix elements pairing properties 48 Ca: sym=  2s N -  2s P N-P asymmetry …………. 14 parameters determined parameter « sym » Neutron Matter ? Test of the interaction:  0, E 0, K, E surf, m eff, E sym ….

Link between the parameter sym and the Neutron Matter EOS? sym=  2s N -  2s P in 48 Ca

Results in neutron matter: D1S, D1N Results in nuclear matter with D1N?

Nuclear matter properties D1S-D1N D1SD1N  0 (fm -3 ) E 0 /A (MeV) K (MeV) E surf (MeV) m eff E sym (MeV) W ls (MeV) Results in nuclei with D1N?

II) Properties of D1N in nuclei 1) Pairing properties 2) Binding energies

II) Properties of D1N in nuclei 1) Pairing properties

Pairing properties: D1, D1S, D1N, A odd correlations Pairing gap (Satula et al.)

Pairing energy in Sn isotopes

Moment of Inertia in 244 Pu

II) Properties of D1N in nuclei 2) Binding energies

Binding Energies: Sn isotopes  E=E HFB -E exp D1S D1N Neutron Matter fit Drift of Binding Energies ?

Binding Energies: more precise study

Binding Energies: Sm isotopes  E=E HFB -E exp D1S D1N

Binding Energies  B=B HFB -B exp

Conclusion Aim: build a new Gogny force which fits Neutron Matter EOS D1N Properties in nuclei: Same pairing properties as D1S if not better (moments of inertia) The drift of B.E. with N has disappeared I) PAIRING II) BINDING ENERGIES (B.E.) Other calculations are being done: beyond mean-field D1N should be soon validated: D1S D1N

Acknowledgements Nuclear Structure Theory group: J.F. Berger, M.Girod B.Ducomet, H.Goutte, S.Peru, N.Pillet, V.Rotival

Results in neutron matter: D1S, D1N Neutron Matter EOS with Gogny forces:

Pairing properties Scattering lengths S=0, T=1: fm Experimental value fm D fm D1S fm D1N Experiment: pairing force ~ bare force (Paris, AV18, ….)

Semi-empirical (Weiszäcker) mass formula Empirical values: a v =-15.68, a s =18.56, a c =0.717, a I =28.1 [MeV] Calculation of the coefficients ( a v,a s,a I ) with the built interaction?

Pairing properties Full HFB calculation Odd A: blocking approximation is used Deviation with experiment: Blocking approximation B.E. of odd nuclei under-estimated when quasi-particle- vibration coupling present Kuo et al: few hundred keV correction

Pairing properties Full HFB calculation Odd A: blocking approximation is used Deviation with experiment: Blocking approximation B.E. of odd nuclei under-estimated when quasi-particle-vibration coupling present Kuo et al: few hundred keV correction

Inertia momenta in 232 Th  1

Inertia momenta in 232 Th 11 11 22 22

Neutron Matter EOS: the variational method  non interacting WF Trial wave-function: kf  f(r ij ) f(r ij ) is varied until E var is minimum Variational procedure:

 f(r ij )

Pairing properties: D1N, A odd ~200 keV

Binding Energies: D1S  B=B HFB -B exp

Binding Energies  B=B HFB -B exp

Binding Energies: D1S  B=B HFB -B exp

Binding Energies  B=B HFB -B exp

Binding Energies  B=B HFB -B exp

Results in neutron matter: D1S, D1N Neutron Matter EOS with Gogny forces:

Pairing properties: D1, A odd ~300 keV Pairing gap (Satula et al.)

Pairing properties GS energy HFB correlations Exp. ? Beyond HFB Odd nucleus  E corr Kuo et al.D1D1SD1N  corr [keV] Few ~100~300~200 Corr. HFB GS 1 st excited states  E odd even odd  E even

ST sub-spaces