An Analysis of the 3 band of HTO aided by the Partridge and Schwenke PES Modou Tine and Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes.

Slides:



Advertisements
Similar presentations
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Advertisements

The microwave spectrum of partially deuterated species of dimethyl ether D. Lauvergnat, a L. Margulès, b R. A. Motyenko, b J.-C. Guillemin, c and L. H.
Hyperfine Effects in Non-Rigid Molecules with 5 Equivalent Nuclei Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes Atmosphériques Créteil,
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,
The Inversion Splitting of 15 NH 2 D and 15 ND 2 H as obtained from their FIR Spectra M. Elkeurti, 1 L. H. Coudert, 2 J. Orphal, 2 C. E. Fellows, 3 and.
Analysis of an 18 O and D enhanced lab water spectrum using variational calculations of HD 18 O and D 2 18 O spectra Michael J Down - University College.
Analysis of the 18 O 3 CRDS spectra in the 6000 – 7000 cm -1 spectral range : comparison with 16 O 3. Marie-Renée De Backer-Barilly, Alain Barbe, Vladimir.
HIGH-RESOLUTION ANALYSIS OF VARIOUS PROPANE BANDS: MODELING OF TITAN'S INFRARED SPECTRUM J.-M. Flaud.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
S&MPO linelist of 16 O 3 in the range 6000 – 7000 cm -1. M.-R. De Backer-Barilly #, Semen N. Mikhailenko*, Yurii Babikov*, Alain Campargue §, Samir Kassi.
A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, A. Campargue 1, S.Kassi 1 Updated line-list of 16 O 3 in the range 5860 – 7000 cm -1 deduced from CRDS.
9th HITRAN Database & Atmospheric Spectroscopy Applications conferences Formaldehyde broadening coefficients Agnès Perrin Laboratoire Interuniversitaire.
A.Perrin: Ohio-State 62th Molecular Symposium, June 2007 New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in.
Agnés Perrin Laboratoire Interuniversitaire des Systémes Atmosphériques (LISA), CNRS, Université Paris XII, Créteil C.Bray,
Experimental Energy Levels of HD 18 O and D 2 18 O S.N. MIKHAILENKO, O.V. NAUMENKO, S.A. TASHKUN Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute.
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Global analysis of broadband rotation and vibration-rotation spectra of sulfur dicyanide Zbigniew Kisiel, a Manfred Winnewisser, b Brenda P. Winnewisser,
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Infrared Diode Laser Spectroscopy of the ν 3 Fundamental Band of the PO 2 Free Radical.
65th OSU International Symposium on Molecular Spectroscopy RH14.
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Emission Spectra of H 2 17 O and H 2 18 O from 320 to 2500 cm -1 Semen MIKHAILENKO 1, Georg MELLAU 2, and Vladimir TYUTEREV 3 1 Laboratory of Theoretical.
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Millimeter- Wave Spectroscopy of Hydrazoic acid (HN 3 ) Brent K. Amberger, Brian J. Esselman, R. Claude Woods, Robert J. McMahon University of Wisconsin.
FTIR EMISSION SPECTROSCOPY AND AB INITIO STUDY OF THE TRANSIENT BO AND HBO MOLECULES 65 th Ohio State University International Symposium on Molecular Spectroscopy.
Molecular Spectroscopy Symposium June 2011 TERAHERTZ SPECTROSCOPY OF HIGH K METHANOL TRANSITIONS John C. Pearson, Shanshan Yu, Harshal Gupta,
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
Methyl Bromide : Spectroscopic line parameters in the 7- and 10-μm region D. Jacquemart 1, N. Lacome 1, F. Kwabia-Tchana 1, I. Kleiner 2 1 Laboratoire.
High-resolution spectroscopy of nitrous acid (HONO) and its deuterated species (DONO) in the far- and mid-IR spectral regions A. Dehayem-Kamadjeu, J. Orphal,
The rotational spectrum of chlorine nitrate (ClONO 2 ): 6 and the 5 / 6 9 dyad Zbigniew Kisiel, Ewa Białkowska-Jaworska Institute of Physics, Polish Academy.
20 June st International Symposium on Molecular SpectroscopyPetkie – TG03-p1 The Millimeter and Submillimeter-wave Spectrum of the , 6 1.
Synchrotron-Based High Resolution Spectroscopy of N-Bearing PAHs Sébastien Gruet, Olivier Pirali, Manuel Goubet and P. Bréchignac ISMS /06/2014.
68th Ohio State University Symposium on Molecular Spectroscopy June 17–21, 2013 SF 6 THE FORBIDDEN BAND UNVEILED V. BOUDON, Laboratoire Interdisciplinaire.
61th Ohio State University Symposium on Molecular Spectroscopy June 19–23, 2006 GLOBAL FREQUENCY AND INFRARED INTENSITY ANALYSIS OF 12 CH 4 LINES IN THE.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Line list of HD 18 O rotation-vibration transitions for atmospheric applications Semen MIKHAILENKO, Olga NAUMENKO, and Sergei TASHKUN Laboratory of Theoretical.
The 1 and 6 bands of diiodo- methane CH 2 I 2 around 3.3  m studied by high-resolution FTS J. Orphal, N. Ibrahim Laboratoire Interuniversitaire des Systèmes.
Analysis of the microwave spectrum of the three-top molecule trimethoxylmethane L. Coudert, a G. Feng, b and W. Caminati b a Laboratoire Interuniversitaire.
The Microwave Spectrum of Monodeuterated Acetamide CH 2 DC(=O)NH 2 I. A. Konov, a L. H. Coudert, b C. Gutle, b T. R. Huet, c L. Margulès, c R. A. Motiyenko,
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
A new spectroscopic observatory in Créteil to measure atmospheric trace gases in solar occultation geometry C. Viatte, P. Chelin, M. Eremenko, C. Keim,
66th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2011 HIGH RESOLUTION SPECTROSCOPY AND PRELIMINARY ANALYSIS OF C–H STRETCHING.
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
A. Barbe, M.-R. De Backer-Barilly, Vl.G. Tyuterev Analysis of CW-CRDS spectra of 16 O 3 : 6000 to 6200 cm -1 spectral range Groupe de Spectrométrie Moléculaire.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
ROTATION-VIBRATIONAL ANALYSIS OF THE BANDS OF FORMALDEHYDE FALLING IN THE 3900 TO 5300 CM -1 REGION W.J. LAFFERTY Optical Technology Division NIST Gaithersburg,
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
National Synchrotron Research Facility We conducted 4 Measuring Campaigns: May 2011, 2012, 2013, and 2014 CLS.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
SESAPS Terahertz Rotational Spectrum of the v5/2v9 Dyad of Nitric Acid * Paul Helminger, a Douglas T. Petkie, b Ivan Medvedev, b and Frank C. De.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
Infrared spectroscopy of planetological molecules Isabelle Kleiner Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Créteil, France.
THE ANALYSIS OF 2ν3 BAND OF HTO
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Fourier Transform Emission Spectroscopy of CoH and CoD
Analysis of torsional splitting in the ν8 band of propane near 870
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
This is the far infra red spectrum of the diatomic molecule CO
I = μr2 μ = m1m2/(m1+m2) I (uÅ2) = / B(cm-1)
The torsional spectrum of doubly deuterated methanol CHD2OH
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Line Strength Measurements in the n2 band of H218O
Presentation transcript:

An Analysis of the 3 band of HTO aided by the Partridge and Schwenke PES Modou Tine and Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes Atmosphériques Créteil, France

Why? Only the ground state 1 and the 1 band 2 have been studied under high-resolution. HTO is an unstable species found in accidental releases from nuclear reactor. Half life is 12.3 years. 1 Helminger et al., Phys. Rev. A 10, 1072 (1974) 2 Cope et al., J. Molec. Spectrosc. 127, 464 (1988)

Overview 2. The experimental spectrum of the 3 band. 1. The vibrational modes and vibrational states. 3. The first analysis of the 3 band. 4. Energy level calculation with Partridge and Schwenkee’s PES 1 1 Partridge and Schwenkee, JCP 106, 4618 (1997) 5. Taking into account the perturbation.

The Vibrational Modes

The Vibrational States

The infrared spectrum It was recorded in 1972 by Guy Steenbeckeliers and Andre Fayt at Louvain University in Belgium. They used an Ebert- Fastie grating spectrometer with a cm  1 resolution.

The HTO sample cell A 7 inch long cell was filled with a mixture of T 2 O and H 2 O.

The experimental spectrum 3 22   5 24 a- and b-type transitions

The first analysis It was carried out using a Watson-type Hamiltonian for the ground and (001) vibrational states. Rotational and distortion constants in the ground state were set to the values of Helminger et al. 1 1 Helminger et al., Phys. Rev. A 10, 1072 (1974)

First analysis: The obs.  cal. table 48 lines were excluded because there is a perturbation. 533 lines were assigned. The RMS deviation is cm  1

The effects of the perturbation 8 levels of the (001) state are very perturbed.

Using the Partridge and Schwenke PES We can obtain vibrational states

Accounting for the perturbation The data for the (001) state and the calculated energy levels for the (110) state will be fit together.

Final analysis: The obs.  cal. table 520 transitions fitted. The RMS deviation is cm  1 Only 13 transitions were excluded.

Final analysis: The perturbed levels RMS deviation for the (110) state is 0.16 cm  1

Final analysis: The constants in cm  1