Techniques to approach the requirements of CLIC stability K. Artoos, O. Capatina (speaker), M. Guinchard, C. Hauviller, F. Lackner, H. Schmickler, D. Schulte.

Slides:



Advertisements
Similar presentations
Alignment of DB and MB quadrupoles Hélène MAINAUD DURAND 17/11/2011 With a lot of input from Sylvain GRIFFET.
Advertisements

Workshop TS May 2008 GENERAL CLIC ALIGNMENT Progresses and strategy. Hélène MAINAUD DURAND, TS/SU/MTI.
Benoit BOLZON Nanobeam 2005 – Kyoto Active mechanical stabilisation LAViSta Laboratories in Annecy working on Vibration Stabilisation Catherine ADLOFF.
Stabilization of the FF quads A.Jeremie B.Bolzon, L.Brunetti, G.Deleglise, N.Geffroy A.Badel, B.Caron, R.Lebreton, J.Lottin Together with colleagues from.
Luminosity Stability and Stabilisation Hardware D. Schulte for the CLIC team Special thanks to J. Pfingstner and J. Snuverink 1CLIC-ACE, February 2nd,
H. MAINAUD DURAND on behalf of the CLIC active pre-alignement team with 3D views and data from Hubert Gerwig, Richard Rosing and Juha Kemppinen Pre-alignment.
Effects of the cryogenics operational conditions on the mechanical stability of the FLASH linac modules Ramila Amirikas, Alessandro Bertolini, Jürgen Eschke,
1 ATF2 project: Investigation on the honeycomb table vibrations Benoit BOLZON 33rd ATF2 meeting, 24th January 2007 Laboratories in Annecy working on Vibration.
ATF2 week meeting: Impact of cooling water on the final doublets vibrations Benoît BOLZON Laboratories in Annecy working on Vibration Stabilization 15/10/08.
Vibration measurements on the final doublets and the Shintake Monitor Benoît BOLZON7th ATF2 project meeting, 16/12/08.
Concepts for Combining Different Sensors for CLIC Final Focus Stabilisation David Urner Armin Reichold.
Installation of FD in September A.Jeremie, B.Bolzon, N.Geffroy, G.Gaillard, J.P.Baud, F.Peltier With the help of KEK, SLAC, KNU and CERN colleagues For.
Our way to the CLIC CDR 1.Definition of CDR and TDR 2.CLIC feasibility items 3.Organization of technical preparation - CTC (=CLIC technical committee)
IN2P3 Les deux infinis G. Balik, B. Caron, L. Brunetti (LAViSta Team) LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry,
Ground Motion + Vibration Transfer Function for Final QD0/SD0 Cryomodule System at ILC Glen White, SLAC ALCPG11, Eugene March 21, 2011.
Friedrich Lackner (TS-SU) CLIC08 Workshop. CLIC Main Beam Quadrupole Magnet The Alignment Concept Expected Properties of a the Support Structure Foreseen.
H. MAINAUD DURAND, on behalf of the CLIC active pre-alignment team MDI alignment plans IWLC2010 International Workshop on Linear Colliders 2010.
CERN, BE-ABP (Accelerators and Beam Physics group) Jürgen Pfingstner Orbit feedback design for the CLIC ML and BDS Orbit feedback design for the CLIC ML.
QD0 stabilization L. Brunetti 1, N. Allemandou 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, C. Hernandez 2, (LAViSta.
CLIC QD0 Stabilization J. Allibe 1, L. Brunetti 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2,C.Hernandez 2 1 : LAPP-IN2P3-CNRS,
Vibration Measurement on the Shintake Monitor and Final Doublet Takashi Yamanaka (Univ. of Tokyo) Benoît Bolzon (LAPP) ATF2 weekly meeting 26 November,
CLIC MDI stabilization update A.Jeremie G.Balik, B.Bolzon, L.Brunetti, G.Deleglise A.Badel, B.Caron, R.Lebreton, J.Lottin Together with colleagues from.
STABILIZATION ACHIEVEMENTS AND PLANS FOR TDR PHASE CLIC MAIN BEAM QUADRUPOLE MECHANICAL STABILIZATION K. Artoos, C. Collette, P. Fernandez Carmona, M.
CLIC MDI Working Group Vibration attenuation via passive pre- isolation of the FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
July 5, 2007 C. HAUVILLER CLIC stabilization Beam line and final focus.
Vibration Stability Studies of a Superconducting XFEL/ILC Accelerating Module at Room Temperature and at 4.5K R. Amirikas, A. Bertolini, W. Bialowons.
CEA DSM Irfu SIS 9th stabilization meeting Status of pole tips measurement.
CARE / ELAN / EUROTeV Feedback Loop on a large scale quadrupole prototype Laurent Brunetti* Jacques Lottin**
1 SiD Push-pull Plans Marco Oriunno, SLAC International Workshop on Linear Colliders 2010 Geneva, October 2010 M.Oriunno, IWLC10 – Geneva, Oct.2010.
The CLIC alignment studies 1 CLIC workshop October 2007 THE CLIC ALIGNMENT STUDIES Hélène MAINAUD DURAND.
CLIC Module WG 20/07/2009 H. MAINAUD DURAND, BE-ABP/SU Pre-alignment system and impact on module design.
Hard or Soft ? C. Collette, K. Artoos, S. Janssens, P. Fernandez-Carmona, A. Kuzmin, M. Guinchard, A. Slaathaug, C. Hauviller The research leading to these.
B. Caron, G. Balik, L. Brunetti LAViSta Team LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry, Université de Savoie,
PROGRESS ON THE CLIC MBQ STABILIZATION R&D K. Artoos, C. Collette **, M. Esposito, P. Fernandez Carmona, M. Guinchard, S. Janssens*, R. Leuxe, R. Morón.
1 ATF2 Project Meeting December 2006 Ground Stabilisation with the CERN STACIS 2000 Stable Active Control Isolation System LAViSta Laboratories in.
Stabilization of the quadrupoles of the main linac One of the CLIC feasibility issues C. Hauviller/ EN CLIC Meeting April 9, 2010.
Main beam Quad Stabilisation: Status of the stabilisation test program at CERN CLIC-stabilization day S. Janssens Contribution to slides by:
Possible technical implementation, R&D program until 2010 C. Hauviller CERN Feasibility item 6: Main Linac active alignment/beam based feedback/stabilization.
Passive isolation: Pre-isolation for FF quads A. Gaddi, H. Gerwig, A. Hervé, N. Siegrist, F. Ramos.
Our way to the CLIC CDR 1.Basic Concepts of the CLIC CDR Present layout of the CDR chapters 2.Possible Time Scale 3.Organization of technical preparation.
STABILISATION AND PRECISION POINTING QUADRUPOLE MAGNETS IN THE COMPACT LINEAR COLLIDER S. Janssens, P. Fernandez Carmona, K. Artoos, C. Collette, M. Guinchard.
October 14, 2008 C. Hauviller 1 Review of the mock-up’s C. Hauviller.
Superconducting final doublet Support A.Jeremie. SC magnet steps Motivation: have an active stabilisation as planned in ILC and CLIC => need to evaluate.
CLIC requirements on Warm Magnets (for CLIC Modules mainly) 1 M. Modena, CERN TE-MSC 13 April 2011 CERN-UK Collaboration Kick-off Meeting.
Vibrations studies for the nominal optics and the ultra-low beta optics Benoît BOLZON 1 B. Bolzon, A. Jeremie (LAPP) P. Bambade, Y. Renier (LAL) A. Seryi.
Beam Physics Issues of Main Beam Stabilisation A.Jeremie (LAPP) C.Hauviller (CERN)
CERN, 27-Mar EuCARD NCLinac Task /3/2009.
Alignment system and impact on CLIC two-beam module design H. Mainaud-Durand, G. Riddone CTC meeting –
Pre-alignment of quadrupoles 1 CLIC stabilization day, STARTSLIDE PRE-ALIGNMENT OF THE MAIN BEAM QUADRUPOLES Hélène MAINAUD DURAND.
FP7: EuCARD after a year of preparation… A.Jeremie.
ATF2: final doublet support Andrea JEREMIE B.Bolzon, N.Geffroy, G.Gaillard, J.P.Baud, F.Peltier With constant interaction with colleagues from KEK, SLAC.
NLC - The Next Linear Collider Project Keeping Nanometer Beams Colliding Vibration Stabilization of the Final Doublet Tom Himel SLAC NLC MAC review October.
IoP HEPP/APP annual meeting 2010 Feedback on Nanosecond Timescales: maintaining luminosity at future linear colliders Ben Constance John Adams Institute,
Test plan for CLIC MB linac quad LAPP option A.Jeremie.
QD0 stabilisation in CLIC CDR A.Jeremie with LAViSta team.
EuCARD NCLinac 9.3 Linac and FF Stabilisation A.Jeremie.
BRAINSTORMING ON LASER BASED SOLUTIONS FOR CLIC PRE-ALIGNMENT INTRODUCTION Hélène MAINAUD DURAND, BE/ABP/SU, 09/02/2010 Status of the study CLIC pre-alignment.
H. MAINAUD DURAND on behalf of the CLIC active pre-alignment team Status on CLIC pre-alignment studies.
FF Stabilisation A.Jeremie (Summary of things learned and work done at LAPP, CERN, SYMME, Oxford, SLAC)
QD0 Stabilisation L. Brunetti 1, J. Allibe 1, J.-P. Baud 1, G. Balik 1, G. Deleglise 1, A. Jeremie 1, S. Vilalte 1 B. Caron 2, A. Badel 2, R. Le Breton.
CARE05 – November Status report on active stabilisation of a linear collider final focus quadrupole mock-up J. Lottin, ESIA
Alignment and stability session
Nano stabilisation studies for CLIC
Vibration issues at Linear Colliders:
EuroTeV WP7 activities in DESY
Topics on Vibration Issues
Laboratories in Annecy working on Vibration Stabilization
Have a chance to operate your own beam at CERN
Background With new accelerators delivering beams always smaller and more energetic, requirements for very precise beam alignment become more and more.
A.Jeremie Some drawings from different CLIC’08 presentations
Presentation transcript:

Techniques to approach the requirements of CLIC stability K. Artoos, O. Capatina (speaker), M. Guinchard, C. Hauviller, F. Lackner, H. Schmickler, D. Schulte (via Webex) CERN, Geneva, Switzerland Nanobeam 08, Novosibirsk, 27 th of May

2 O. Capatina et al., Novosibirsk, 27th of May 2008 Overview CLIC general description General stabilization requirements Techniques for mechanical stabilization CLIC stabilization team Work plan Conclusion

3 CLIC (Compact LInear Collider) complex (new parameters) O. Capatina et al., Novosibirsk, 27th of May 2008

4 Detectors and Interaction Point CERN site Prevessin Longitudinal section of a laser straight Linear Collider on CERN site O. Capatina et al., Novosibirsk, 27th of May 2008

5 CLIC module CLIC TUNNEL CROSS-SECTION 4.5 m diameter (Present status) O. Capatina et al., Novosibirsk, 27th of May 2008

6 CLIC stabilization requirements Linear collider Luminosity ~40 nm 1 nm I.P. O. Capatina et al., Novosibirsk, 27th of May TeV CLIC Luminosity: L = 5.9 * 10^34 cm -2 s -1

7 CLIC stabilization requirements A large number of luminosity loss sources exist –Need to allocate a budget for each of them Current luminosity loss allocated for magnet jiter: –1% for main linac magnets –1% for BDS magnets, except final doublet magnets –1% for final doublet magnet These are a large fraction of the overall luminosity loss O. Capatina et al., Novosibirsk, 27th of May 2008

8 Pulse separation 20 ms Bunch train length 156 ns Bunch separation length 0.5 ns (6 periods) 312 bunches / pulse CLIC stabilization requirements Some CLIC overall parameters Center of mass energy 3 TeV Main linac RF frequency 12 GHz Linac repetition rate 50 Hz O. Capatina et al., Novosibirsk, 27th of May 2008

9 CLIC stabilization requirements Overview of the global alignment / stabilization strategy for main linac magnets “Steady state” procedure: But, before “Steady state”, alignment has to be carried out O. Capatina et al., Novosibirsk, 27th of May 2008 Beam position measurement with BPM Beam based feedback correction with magnet correctors Mechanical stabilization ON

10 CLIC stabilization requirements Overview of the global alignment / stabilization strategy for main linac magnets Once / year: 1.Mechanical pre-alignment => 0.1 mm 2.Active pre-alignment using HLS, WPS, RASNIK => +/- 10  m on a sliding window of 200 m 3.Beam based active alignment with movers – complex procedure => 1  m 4.Beam based alignment with magnet correctors => few nm Once / few weeks –Repeat Once / couple of hours –Repeat but “simplified” procedure “Steady state” procedure presented before O. Capatina et al., Novosibirsk, 27th of May 2008 Beam OFF Beam ON Mech. Stabil. OFF Mech. Stabil. ON

11 CLIC stabilization requirements Overview of the global alignment / stabilization strategy for main linac magnets “Steady state” procedure: O. Capatina et al., Novosibirsk, 27th of May 2008 Beam position measurement with BPM Beam based feedback correction with magnet correctors Mechanical stabilization ON

12 CLIC stabilization requirements Numerical simulation: Ratio of the Beam based feedback On / feedback Off for the amplitude of the beam jitter at Interaction Point as a function of frequency The frequency at the limit between beam based feedback and mechanical stabilization is not very strict ! O. Capatina et al., Novosibirsk, 27th of May 2008

13 CLIC stabilization requirements Mechanical stabilization requirements: Quadrupole magnetic axis vibration tolerances: Main beam quadrupoles to be mechanically stabilized: –A total of about 4000 main beam quadrupoles –Of 4 types –Magnetic length from 350 mm to 1850 mm Mechanical stabilization might be On at some quads and Off for some others Final Focusing Quadrupoles Main beam quadrupoles Vertical0.1 nm > 4 Hz1 nm > 1 Hz Horizontal5 nm > 4 Hz5 nm > 1 Hz O. Capatina et al., Novosibirsk, 27th of May 2008

14 Environmental vibration levels – orders of magnitude, CERN site O. Capatina et al., Novosibirsk, 27th of May 2008 LEP ground motion during 1 year 300 µm – 1 mm Ground motion due to Lunar cycle (tides) Several µm 7 sec hum 100 nm, CLEX 10 nm, CLEX Alignment “Slow” motion“Fast” motion Correction with beam- based feedback Mechanical stability of main beam quadrupoles Cultural noise Acoustic noise becomes very important Geophones Accelerometers Required vertical stability for all main linac quads for CLIC: 1 nm Required vertical stability for Final Focus quads for CLIC: 0.1 nm

15 Techniques for mechanical stabilization O. Capatina et al., Novosibirsk, 27th of May 2008 Structural control problem that needs an integrated approach

16 How to measure vibrations/ dynamic displacements with amplitudes of 0.1 nm? Seismometers (geophones) Velocity Acceleration Accelerometers (seismic - piezo) Vibrometer et interferometer Déplacement MONALISA Streckeisen STS2 Guralp CMG 3T Guralp CMG 40T Eentec SP500 PCB 393B31 2*750Vs/m2*800Vs/m 30 s -50 Hz120 s -50 Hz360s -50 Hz 2*750Vs/m2000Vs/m 60 s -70 Hz 1.02Vs 2 /m x,y,z z 10 s -300 Hz z 13 kg 23 kCHF 13.5 kg7.5 kg0.750 kg0.635 kg 19 kCHF8 kCHF1.7 kCHF electrochemical O. Capatina et al., Novosibirsk, 27th of May 2008 Output measurement

17 Signal processing: Resolution, filtering, window, FFT, DSP, integration, coherence >> Sensitivity + resolution Noise level, « self noise » measurement (ex. blocking the seismic mass or by coherence ) Cross axis sensitivity, Can give values < sensor resolution O. Capatina et al., Novosibirsk, 27th of May 2008 Output measurement Characterization of measurement method, fix a standard Characterization for low intensity signals:

18 Techniques for mechanical stabilization O. Capatina et al., Novosibirsk, 27th of May 2008 Structural control problem that needs an integrated approach

19 1. Ground vibration Remark: Measurement interpretation may depend on Signal processing ! DSP R.M.S. Intégré CLEX O. Capatina et al., Novosibirsk, 27th of May 2008 Disturbance sources

20 2. Direct forces on magnet Mechanical coupling via beam pipe, cooling pipe, instrumentation cables,... CLEX Vibrations inside the structure to be stabilized:  Cooling water circuit  Active alignment with stepper motors CTF2 O. Capatina et al., Novosibirsk, 27th of May 2008 Disturbance sources

21 3.Acoustic noise Acoustic noise = air pressure waives Acoustic noise as dominant source de vibration > 50 Hz See next presentation by B.Bolzon For high frequencies > 300 Hz, movements > tolerances may be induced O. Capatina et al., Novosibirsk, 27th of May 2008 Disturbance sources

22 Techniques for mechanical stabilization O. Capatina et al., Novosibirsk, 27th of May 2008 Structural control problem that needs an integrated approach

23 Natural frequency Damping ratio O. Capatina et al., Novosibirsk, 27th of May 2008 Vibrations « Transmissibility » “Plant” characterization / optimization Magnet mechanical design to be carefully optimized !

24 Real system: Multi degrees of freedom and several deformation modes with different structural damping Experimental modal analysis on CLEX girder Amplification of floor movement O. Capatina et al., Novosibirsk, 27th of May 2008 “Plant” characterization / optimization

25 Techniques for mechanical stabilization O. Capatina et al., Novosibirsk, 27th of May 2008 Structural control problem that needs an integrated approach

26 Resolution, movement reproducibility? Friction Guiding systems with friction Real resolution 1 μm (0.1 μm ) Solution: Piezo actuators PZT + flexural guides + feedback capacitive sensor O. Capatina et al., Novosibirsk, 27th of May 2008 Control input Actuators with 0.1 nm resolution? 0.1 nm 100 N Calibration bench flexural guides

27 Stabilized structures and Piezo actuators with resolution of 0.05 nm exist! But only for few kg and rigid objects.... Techniques to be developed for heavier and larger structures Fernandez Lab, Columbia University NY Traction test on a protein O. Capatina et al., Novosibirsk, 27th of May 2008 Techniques for mechanical stabilization

28 O. Capatina et al., Novosibirsk, 27th of May 2008 Techniques for mechanical stabilization Accelerator environment has to be taken into account In particular radiation effects have to be considered –Radiation level at CLIC not yet estimated –Radiation damage effects on electronics: Total dose Single event error –Experience with other CERN projects have shown Single event error can produce important failures

29 O. Capatina et al., Novosibirsk, 27th of May 2008 Radiation issues Expected single event error rate in the various underground regions for a nominal year of LHC operation Information from T. Wijnands, CERN

30 O. Capatina et al., Novosibirsk, 27th of May 2008 Radiation issues And for CNGS Information from T. Wijnands, CERN

31 O. Capatina et al., Novosibirsk, 27th of May 2008 Radiation issues After just 2 days of operation in late 2007, Single Event Error failures occurred in two out of three of CNGS zones, at rates one or two orders of magnitude less than expected Information from T. Wijnands, CERN

32 Extensive work done between 2001 and 2003 concerning CLIC stabilization From 2004 to 2007: –Work continued only at Lapp Annecy, France –At CERN beam dynamic studies, update of stabilization requirements by Daniel Schulte Collaboration between several Institutes started in 2008 Regular face-to-face meetings O. Capatina et al., Novosibirsk, 27th of May 2008 CLIC stabilization team MONALISAIRFU/SIS

33 Present goal for CLIC: –Demonstrate all key feasibility issues and document in a Conceptual Design Report by 2010 –CLIC stabilization feasibility to be demonstrated by 2010 Actions: –Characterize vibrations/noise sources in an accelerator and detectors Summary of what has been done up to now –CLIC Stabilization Website: Additional correlation measurements to be done at LHC interaction regions for distances from several m up to 1000 m Continue measurements in CLEX environment at different installation phases Work plan O. Capatina et al., Novosibirsk, 27th of May 2008

34 Actions: –Overall design Linac –Compatibility of linac supporting system with stabilization (including mechanical design) –Design of quadrupole (we have to stabilize the magnetic axis) and build a mock-up with all mechanical characteristics Final focus –Integration of all the final focus features: types of supporting structures, coupling with detector –Sensors Qualification with respect to EMC and radiation Calibrate by comparison. Use of interferometer to calibrate other sensors. Create a reference test set-up Work plan O. Capatina et al., Novosibirsk, 27th of May 2008

35 Actions: –Feedback Develop methodology to tackle with multi degrees of freedom (large frequency range, multi-elements) Apply software to various combinations of sensors/actuators and improve resolution (noise level) –Overall system analysis Stability, bandwidth,… Sensitivity to relaxed specifications –Integrate and apply to linac A mock-up should be ready to provide results by June 2010 with several types of sensors including interferometers Mock-up to be integrated in accelerator environment – Where? Work plan O. Capatina et al., Novosibirsk, 27th of May 2008

36 Conclusion Collaboration: Demonstrate stability of 0.1 nm > 4 Hz for final doublets Demonstrate stability of 1 nm > 1 Hz for main beam quadrupoles With a realistic system, in an accelerator environment, to be checked using 2 different methods An integrated approach: stabilization elements to be taken into account at the design phase of CLIC composants, ground motion characterization, sensors, actuators, alignment compatibility with beam dynamics See next presentations in this workshop: - “Study Of Vibrations And Stabilization At The Sub-Nanometre Scale For CLIC Final Doublets” by Benoit BOLZON (LAPP) - “Monalisa status” (via Webex) by David Urner (University of Oxford) Thank you! O. Capatina et al., Novosibirsk, 27th of May 2008 MONALISAIRFU/SIS