WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.

Slides:



Advertisements
Similar presentations
SSAG Data and Algorithm Subgroup, February 2004, Brussels Summary of data product and algorithm development at KNMI Ronald van der A, Juan Acarreta,
Advertisements

Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
GOME-2 polarisation data and products L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI GSAG #42, EUMETSAT,
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Using a Radiative Transfer Model in Conjunction with UV-MFRSR Irradiance Data for Studying Aerosols in El Paso-Juarez Airshed by Richard Medina Calderón.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Presentation on OMPS Nadir Mapper Wavelength Shift Adjustment for Earth-view Measurements.
Validation of Solar Backscatter Radiances Using Antarctic Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
Surface UV radiation monitoring based on GOME and SCIAMACHY Jos van Geffen 1,2, Ronald van de A 1, Michiel van Weele 1, Marc Allaart 1, Henk Eskes 1 1)
DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
Just how good is a L1 spectrum? An overview of SCIAMACHY calibration quality Ralph Snel, SSAG Calibration Subgroup and SQWG SADDU meeting June 16/17, 2008.
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
KNMI, The Netherlands * SCIAMACHY validation workshop, Bremen, 6 Dec ‘04 Large scale validation of SCIAMACHY nadir reflectance Gijs van.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
GOME-2 Polarisation Study First results L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI EUMETSAT, Darmstadt,
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
GOME-2 Polarisation Study — Final Presentation L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI EUMETSAT, Darmstadt,
Rutherford Appleton Laboratory Remote Sensing Group Ozone Profile Retrieval from MetOp R. Siddans, G. Miles, B. Latter A. Waterfall, B. Kerridge Acknowledgements:
Status S5p TROPOMI Pepijn Veefkind.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
SeaDAS Training ~ NASA Ocean Biology Processing Group 1 Level-2 ocean color data processing basics NASA Ocean Biology Processing Group Goddard Space Flight.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
1 Aerosol information from the UV-visible spectrometer GOME-2 Piet Stammes, KNMI, De Bilt, The Netherlands 7 November 2012.
Page 1 Validation Workshop, , IfE Bremen, G. Lichtenberg:Calibration status National Institute for Space Research SCIAMACHY Calibration status November.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Validation workshop, Frascati, 13 December 2002Page 1 SCIAMACHY products quality and recommendations Based on presentations and discussions during this.
UV Aerosol Indices from (TROP)OMI An investigation of viewing angle dependence , Marloes Penning de Vries and Thomas Wagner Max Planck Institute.
WP 8: Impact on Satellite Retrievals University of l’Aquila (DFUA [12]) Ecole Polytechnique (EPFL [13]) Observatory of Neuchatel (ON [14]) Partners (according.
WP 8: Impact on Satellite Retrievals University of l’Aquila (DFUA [12]): Vincenzo Rizi Ecole Polytechnique (EPFL [13]): Bertrand Calpini Observatory of.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
Investigation on the possibilities of trend detection of spectral irradiance Merle Glandorf and Gunther Seckmeyer Institute of Meteorology and Climatology.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
1 NOAA-UPRM COOP Program in Atmospheric Sciences and Meteorology, Department of Physics, University of Puerto Rico at Mayagüez, Mayagüez, PR Yaítza.
Validation of the OMI Surface UV product OMI Science Team Meeting #11 De Bilt, June 20-23, 2006 Aapo Tanskanen.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
ESTIMATION OF SOLAR RADIATIVE IMPACT DUE TO BIOMASS BURNING OVER THE AFRICAN CONTINENT Y. Govaerts (1), G. Myhre (2), J. M. Haywood (3), T. K. Berntsen.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 1. Scattering Phase Function Xiong Liu, 1 Mike Newchurch, 1,2 Robert Loughman.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
SEMIANALYTICAL CLOUD RETRIEVAL ALGORITHM AND ITS APPLICATION TO DATA FROM MULTIPLE OPTICAL INSTRUMENTS ON SPACEBORNE PLATFORMS: SCIAMACHY, MERIS, MODIS,
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
TOMS Ozone Retrieval Sensitivity to Assumption of Lambertian Cloud Surface Part 2. In-cloud Multiple Scattering Xiong Liu, 1 Mike Newchurch, 1,2 Robert.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Status of SQWG activities H. Bovensmann, G. Lichtenberg, R. Snel, C. Lerot,
Rob Roebeling, Hartwig Deneke and Arnout Feijt GEWEX Cloud Assessment Meeting Madison, United States of America 6 -7 July 2006 "METEOSAT-8 (SEVIRI) CLOUD.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
Definition of Dobson unit 1 Dobson Unit (DU) is defined to be 0.01 mm thickness at standard temperature and pressure (STP) How many molecules are in a.
OMI BSDF Validation Using Antarctic and Greenland Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA Outline.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Visible vicarious calibration using RTM
SEVIRI Solar Channel Calibration system
Vicarious calibration by liquid cloud target
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
Hyperspectral radiation: measurements and modelling
Scientist, Gamer, Fighter
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute (KNMI) 2 Netherlands Institute for Space Research (SRON) SCIAvisie Meeting, SRON, Utrecht,

(2) WP3: scientific AAI (SC-AAI) and operational AAI (L2-AAI) 1) correction for calibration offset at t=0 2) correction for the obstruction in the FOV for westernmost scan mirror positions (problem affects data until April 2003) 3) correction for (scan-angle dependent) instrument degradation (on top of the standard m-factor correction) 4) look-up tables (LUTs) calculated by RTM taking polarisation into account 5) completely new algorithm approach: more accurate + allows negative albedos 6) improved surface height calculation method + database 7) proper flagging of (potential) sunglint situations 8) flagging of solar eclipse events 9) viewing and solar angles calculated w.r.t. sea-level (instead of w.r.t. 100 km) 10) ozone column dependency of AAI taken into account 11) LUTs calculated by RTM taking the atmosphere’s sphericity into account 12) O2-O2 absorption included in LUTs Algorithm improvements: SQWG YR 1/2SQWG YR 3/4

SCIAvisie Meeting, SRON, Utrecht, (3) (10) Taking ozone absorption into account in the simulated reflectances / LUTs  ozone column fixed to 334 DU Effect of neglecting ozone on the AAI  - New LUTs + ATBD + documentation sent to DLR (end of June 2009) - Total (SCIAMACHY L2) ozone columns are required (and available) as input - DLR are working on changing the algorithm code of the operational processor - Testing is needed with SC-AAI as a reference

SCIAvisie Meeting, SRON, Utrecht, (4) (11) Pseudo-spherical treatment of the atmosphere’s sphericity in the LUTs: LUTs recreated using DAK v3.1, which offers pseudo-sphericity. Improvement is relatively large for solar zenith angles above 75°. Proposed change requires modest changes in the L2-AAI retrieval code. LUTs of the reflectances at 340 and 380 nm were originally calculated for plane parallel atmospheres (using the RTM “DAK”). We proposed to improve this. Impact on the AAI:

SCIAvisie Meeting, SRON, Utrecht, (5) –non-negligible effect: 0.1–0.5 index points for thick clouds –offset of ~0.1 index points for thin/no clouds –same offset for positive residues (12) Taking O 2 –O 2 absorption into account: Effect cannot be neglected. Including O 2 –O 2 absorption in the LUTs improves matters at little or no cost. Effect of including O 2 –O 2 absorption in the AAI LUTs: [O 2 –O 2 absorption bands at 360 and 380 nm]

SCIAvisie Meeting, SRON, Utrecht, (6) Plans for WP3:  Keep improving the scientific AAI product (SC-AAI)  Assist DLR with the implementation of the proposed changes to improve the quality of the L2-AAI (“SQWG year 3/4 activities”)  Continue validation of SC-AAI and L2-AAI  Maintain SC-AAI data archive at the TEMIS site  Further study the scan-angle dependent degradation for support of WP10

SCIAvisie Meeting, SRON, Utrecht, (7) WP10: level-1 validation –comparison with radiative transfer model “DAK” (in the UV) –comparison with other satellite instruments (GOME-1, MERIS, POLDER-2, …) –qualitative analysis of the spectra (spectral properties) Validation techniques for the reflectance: calibration offset spectral features

SCIAvisie Meeting, SRON, Utrecht, (8) Validation techniques for the polarisation: –comparisons with single scattering model –validation via special geometries –comparison with POLDER-2 PMDs 1–4 improved a lot. Degradation has become a problem. Key data improvements: –SRON is working on a new set of key data which is expected to improve the radiometric calibration significantly –This should also solve the presence of spectral features in the spectra –Also polarisation key data will be improvement Validation techniques for the reflectance + polarisation will be used to study the influence of the new key data. (We are repeating the validation work for every new level-1 data version any way.)

SCIAvisie Meeting, SRON, Utrecht, (9) Degradation monitoring using the scientific AAI product: global mean AAI Without m-factors - increase of ~4 index points With m-factors

SCIAvisie Meeting, SRON, Utrecht, (10) Plans for WP10:  Verify improvement in calibration brought about by the new key data using the various tools we developed  Monitor degradation and analyse quality of applied degradation correction using the Absorbing Aerosol Index (AAI) in the UV  Monitor and validate polarisation product using special geometries  Analyse the reflectance over specific stable Earth targets

SCIAvisie Meeting, SRON, Utrecht, (11) Extra slides (R)

SCIAvisie Meeting, SRON, Utrecht, (12) R1: The “Global Dust Belt”

SCIAvisie Meeting, SRON, Utrecht, (13) R2: Introduction of the Absorbing Aerosol Index (AAI) and the residue A.Definition of the residue: where the surface albedo A for the simulations is such that: (A is assumed to be wavelength independent: A 340 = A 380 ) no clouds, no aerosols: r = 0 clouds, no absorbing aerosols: r < 0 absorbing aerosols: r > 0 B.Definition of the AAI: AAI = residue > 0(and the AAI is not defined where residue < 0) – The AAI represents the scene colour in the UV –

SCIAvisie Meeting, SRON, Utrecht, (14) R3: Typical global aerosol distribution: The “Global Dust Belt”: Desert Dust Aerosols (DDA) (dust storms, all year) AAI from other UV satellite instruments: TOMS, GOME-1, GOME-2. Combined with SCIAMACHY there are more than three decades (1978–2009) of AAI data available for studies of trends in desert dust and biomass burning aerosol. Biomass Burning Aerosols (BBA) (dry season, anthropogenic)