GASES. General Properties of Gases There is a lot of “free” space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely.

Slides:



Advertisements
Similar presentations
Ideal Gas Law The equality for the four variables involved in Boyle’s Law, Charles’ Law, Gay-Lussac’s Law and Avogadro’s law can be written PV = nRT.
Advertisements

GASES. General Properties of Gases There is a lot of “free” space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely.
1 Chapter 6 The States of Matter 6.9 Partial Pressure (Dalton’s Law)
Dudes with Gas Conversion Madness Combine This That’s Ideal Gas Props
E.Q.: How do gases behave and what are the conditions that affect this behavior?
GASES Chemistry – Chapter 14
Ideal Gas Law The equality for the four variables involved in Boyle’s Law, Charles’ Law, Gay-Lussac’s Law and Avogadro’s law can be written PV = nRT R.
Chapter 11 Gases.
Chapter 6 Gases 6.1 Properties of Gases.
GAS LAWS Add a picture or 2..
GASES Chemistry I Honors – Chapter 11 1 Importance of Gases Airbags fill with N 2 gas in an accident. Airbags fill with N 2 gas in an accident. Gas is.
Equal volumes of gases at the same T and P have the same number of molecules. V = kn V and n are directly related. twice as many molecules MOLEY… MOLEY…
1 Lecture 6 Gases Properties of Gases Gas Pressure Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings.
Gas Laws What to do when conditions are ideal. Boyle’s Law What was the relationship between pressure and volume? When P Then V Algebraically this is.
1 GASES 2 General Properties of Gases There is a lot of “free” space in a gas.There is a lot of “free” space in a gas. Gases can be expanded infinitely.Gases.
Chapter 11 - Gases Properties of Gases Gas Pressure Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
Active Chemistry Kinetic Molecular Theory and the Gas Laws.
1 GAS Properties SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print setup. Also, turn.
GASES Chapter 13.
Gas Laws: Introduction At the conclusion of our time together, you should be able to: 1. List 5 properties of gases 2. Identify the various parts of the.
Gases Chapter 12 2 Importance of Gases Airbags fill with N 2 gas in an accident.Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition.
Gas Laws: Introduction At the conclusion of our time together, you should be able to: 1. List 5 properties of gases 2. Identify the various parts of the.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Ideal Gas Law & Gas Stoichiometry
1 GASES Chemistry I – Chapter 11 2 Importance of Gases Airbags fill with N 2 gas in an accident.Airbags fill with N 2 gas in an accident. Gas is generated.
1 SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print setup. Also, turn off the backgrounds.
1 GASES 2 Importance of Gases Airbags fill with N 2 gas in an accident.Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition.
1 THREE STATES OF MATTER 2 Property of Gases 3 General Properties of Gases There is a lot of “free” space in a gas.There is a lot of “free” space in.
Copyright © 2004 Pearson Education Inc., publishing as Benjamin Cummings. 1 Chapter 8 Gases 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.8 Ideal Gas.
Gas Laws: Introduction At the conclusion of our time together, you should be able to: 1. List 5 properties of gases 2. Identify the various parts of the.
1 GASES Chemistry II – Chapter 13 SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print.
Kinetic MolecularTheory is based on the idea that particles of matter are always in constant motion. The theory applies to all states of matter and can.
Ideal Gas Law & Gas Stoichiometry. Ideal Gas Law P V = n R T P = Pressure (atm) V = Volume (L) T = Temperature (K) n = number of moles R is a constant,
Partial Pressure (Dalton’s Law)
Chapter 11 - Gases Properties of Gases Gas Pressure Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
1.Explain Dalton’s Law 2.Use Dalton’s Law to solve a problem.
1 GASES Chemistry I – Chapter 14 Chemistry I Honors – Chapter 13 SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead.
S yllabes of 331 chem course Kinetic theory. Forces between atoms, ions and molecules. Colligative properties. Vapor pressure and enthalpy. Boiling and.
1 Chapter 11 Gases Partial Pressure (Dalton’s Law) Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
General, Organic, and Biological Chemistry Copyright © 2010 Pearson Education, Inc. 1 Chapter 7 Gases 7.9 Partial Pressure (Dalton’s Law)
1 Chapter 7 Gases 7.1 Properties of Gases 7.2 Gas Pressure.
Chapter 6 Gases Properties of Gases 6.2 Gas Pressure Kinetic Theory of Gases A gas consists of small particles that move rapidly in straight lines.
Chapter 6 Gases 6.1 Properties of Gases.
GASES Chemistry I Honors – Chapter 13 1 Importance of Gases (don’t copy) Airbags fill with N 2 gas in an accident. Airbags fill with N 2 gas in an accident.
GASES CHEMISTRY I – CHAPTER 13 IMPORTANCE OF GASES  Airbags fill with N 2 gas in an accident.  Gas is generated by the decomposition of sodium azide,
Chapter 11 - Gases Properties of Gases Gas Pressure Copyright © 2008 by Pearson Education, Inc. Publishing as Benjamin Cummings.
1 The Gas Laws 2 Importance of Gases Airbags fill with N 2 gas in an accident.Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition.
1 GASES Chemistry I – Chapter 14 Chemistry I Honors – Chapter 13 SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead.
1 GASES. 2 *Importance of Gases Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide, NaN 3. 2 NaN 3 ---> 2.
GAS LAWS. The Nature of Gases  Gases expand to fill their containers  Gases are fluid – they flow  Gases have low density  1/1000 the density of the.
1 GASES SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print setup. Also, turn off the.
1 IDEAL GAS LAW Brings together gas properties. Can be derived from experiment and theory. BE SURE YOU KNOW THIS EQUATION! P V = n R T.
1 Chapter 6 Gases 6.1 Properties of Gases 6.2 Gas Pressure Copyright © 2009 by Pearson Education, Inc.
1 GASES Ch 12 2 Importance of Gases Airbags fill with N 2 gas in an accident.Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition.
Not so long ago, in a chemistry lab far far away… May the FORCE/area be with you.
Lecture PLUS Timberlake Ideal Gas Law The equality for the four variables involved in Boyle’s Law, Charles’ Law, Gay-Lussac’s Law and Avogadro’s.
Gas laws By Mr. M.
States of Matter and GASES Chemistry Honors – Chapter 13-14
Chapter 6 Gases 6.1 Properties of Gases 6.2 Gas Pressure.
GASES Chemistry I – Chapter 14 Chemistry I Honors – Chapter 13
GASES.
GASES Chemistry I – Chapter 14 Chemistry I Honors – Chapter 13
Bellringer In the three boxes, draw what the molecules look like in a solid, liquid, and gas. Solid Liquid Gas.
Avogadro’s Hypothesis
Gases in the Air The % of gases in air Partial pressure (STP)
Avogadro’s Hypothesis
Gases in the Air The % of gases in air Partial pressure (STP)
Presentation transcript:

GASES

General Properties of Gases There is a lot of “free” space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely. Gases diffuse and mix rapidly.

Properties of Gases Gas properties can be modeled using math. Model depends on— V = volume of the gas (L) T = temperature (K) ALL temperatures in the entire chapter MUST be in Kelvin!!! No Exceptions! n = amount (moles) P = pressure (atmospheres)

Pressure Column height measures Pressure of atmosphere 1 standard atmosphere (atm) * = 760 mm Hg (or torr) * = 14.7 pounds/in 2 (psi) = kPa (SI unit is PASCAL) * Memorize these!

Pressure conversions A.) What is 475 mm Hg expressed in atm? 475 mmHg 1 atm = atm 760 mm Hg B.) The pressure of a tire is measured as 29.4 psi. What is this pressure in mm Hg? 29.4 psi 760 mmHg = 1.52 x 10 3 mmHg 14.7 psi

Your Turn: Learning Check for Pressure Conversions A.) What is 2 atm expressed in torr? B.) The pressure of a tire is measured as 32.0 psi. What is this pressure in kPa?

STP STP in chemistry stands for Standard Temperature and Pressure Standard Pressure = 1 atm (or an equivalent) Standard Temperature = 0 deg C (273 K) STP allows us to compare amounts of gases between different pressures and temperatures

Your Turn A sample of neon gas used in a neon sign has a volume of 15 L at STP. What is the volume (L) of the neon gas at 2.0 atm and –25°C?

Avogadro’s Hypothesis Equal volumes of gases at the same T and P have the same number of molecules. V = n (RT/P) = kn V and n are directly related. twice as many molecules

Ideal Gas Law P V = n R T Brings together gas properties. Can be derived from experiment and theory. BE SURE YOU KNOW THIS EQUATION!

Using PV = nRT P = Pressure V = Volume T = Temperature N = number of moles R is a constant, called the Ideal Gas Constant Instead of learning a different value for R for all the possible unit combinations, we can just memorize one value and convert the units to match R. R = L x atm Mol x K

Using PV = nRT How much N2 is required to fill a small room with a volume of 960 cubic feet (27,000 L) to 745 mm Hg at 25 oC? Solution 1. Get all data into proper units V = 27,000 L T = 25 oC = 298 K P = 745 mm Hg (1 atm/760 mm Hg) = 0.98 atm And we always know R, L x atm / mol x K

Using PV = nRT How much N2 is req’d to fill a small room with a volume of 960 cubic feet (27,000 L) to P = 745 mm Hg at 25 oC? Solution 2.) Now plug in those values and solve for the unknown. PV = nRT RT RT n = 1.1 x 103 mol (or about 30 kg of gas)

Your Turn: Learning Check for Ideal Gas Law A.) Dinitrogen monoxide (N2O), laughing gas, is used by dentists as an anesthetic. If 2.86 mol of gas occupies a 20.0 L tank at 23°C, what is the pressure (mm Hg) in the tank in the dentist office? B.) A 5.0 L cylinder contains oxygen gas at 20.0°C and 735 mm Hg. How many grams of oxygen are in the cylinder?

Gases in the Air The % of gases in air Partial pressure (STP) 78.08% N mm Hg 20.95% O mm Hg 0.94% Ar 7.1 mm Hg 0.03% CO mm Hg P AIR = P N + P O + P Ar + P CO = 760 mm Hg Total Pressure760 mm Hg

Dalton’s Law of Partial Pressures What is the total pressure in the flask? P total in gas mixture = P A + P B +... Therefore, P total = P H 2 O + P O 2 = 0.48 atm Dalton’s Law: total P is sum of PARTIAL pressures. 2 H 2 O 2 (l) ---> 2 H 2 O (g) + O 2 (g) 0.32 atm 0.16 atm 0.32 atm 0.16 atm

Dalton’s Law John Dalton

Health Note When a scuba diver is several hundred feet under water, the high pressures cause N 2 from the tank air to dissolve in the blood. If the diver rises too fast, the dissolved N 2 will form bubbles in the blood, a dangerous and painful condition called "the bends". Helium, which is inert, less dense, and does not dissolve in the blood, is mixed with O 2 in scuba tanks used for deep descents.

Collecting a gas “over water” Gases, since they mix with other gases readily, must be collected in an environment where mixing can not occur. The easiest way to do this is under water because water displaces the air. So when a gas is collected “over water”, that means the container is filled with water and the gas is bubbled through the water into the container. Thus, the pressure inside the container is from the gas AND the water vapor. This is where Dalton’s Law of Partial Pressures becomes useful.

Table of Vapor Pressures for Water

Solve This! A student collects some hydrogen gas over water at 20 degrees C and 768 torr. What is the pressure of the H 2 gas? 768 torr – 17.5 torr = torr

GAS DENSITY Highdensity Lowdensity 22.4 L of ANY gas AT STP = 1 mole

Gases and Stoichiometry 2 H 2 O 2 (l) ---> 2 H 2 O (g) + O 2 (g) Decompose 1.1 g of H 2 O 2 in a flask with a volume of 2.50 L. What is the volume of O 2 at STP? Bombardier beetle uses decomposition of hydrogen peroxide to defend itself.

Gases and Stoichiometry 2 H 2 O 2 (l) ---> 2 H 2 O (g) + O 2 (g) Decompose 1.1 g of H 2 O 2 in a flask with a volume of 2.50 L. What is the volume of O 2 at STP? Solution 1.1 g H 2 O 2 1 mol H 2 O 2 1 mol O L O 2 34 g H 2 O 2 2 mol H 2 O 2 1 mol O 2 34 g H 2 O 2 2 mol H 2 O 2 1 mol O 2 = 0.36 L O 2 at STP

Gas Stoichiometry: Practice! A. What is the volume at STP of 4.00 g of CH 4 ? B. How many grams of He are present in 8.0 L of gas at STP?

What if it’s NOT at STP? 1. Do the problem like it was at STP. (V 1 ) 2. Convert from STP (V 1, P 1, T 1 ) to the stated conditions (P 2, T 2 )

Try this one! How many L of O 2 are needed to react 28.0 g NH 3 at 24°C and atm? 4 NH 3 (g) + 5 O 2 (g) 4 NO(g) + 6 H 2 O(g)