Technische Universität München KONWIHR II – Computational Steering Miriam Mehl Juni 2009.

Slides:



Advertisements
Similar presentations
Technische Universität München Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD - Free Boundary Value Problems Tobias.
Advertisements

Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
School of Computing University of Leeds Computational PDEs Unit A Grid-based approach to the validation and testing of lubrication models Christopher Goodyer.
Lehrstuhl Informatik III: Datenbanksysteme Grid-based Data Stream Processing in e-Science 1 Richard Kuntschke 1, Tobias Scholl 1, Sebastian Huber 1, Alfons.
Prof. dr. ir. J.H.C. Reiber A Multi-Modal Visualisation Environment for Interactive Analysis of Medical Data MULTI-VIS Lorentz Center, VIEW:
Multidisciplinary Computation and Numerical Simulation V. Selmin.
University of Chicago Department of Energy The Parallel and Grid I/O Perspective MPI, MPI-IO, NetCDF, and HDF5 are in common use Multi TB datasets also.
P3- Represent how data flows around a computer system
Matthias Wimmer, Ursula Zucker and Bernd Radig Chair for Image Understanding Computer Science Technische Universität München { wimmerm, zucker, radig
An Eulerian Divergence Preserving Approach for Partitioned FSI Simulations on Cartesian Grids M. Mehl, M. Brenk, I. Muntean, T. Neckel, T. Weinzierl TU.
Asa MacWilliams Lehrstuhl für Angewandte Softwaretechnik Institut für Informatik Technische Universität München Dec Software.
SURGICAL SIMULATIONS: IT’S ALL IN A GAME ! Gaming techniques for medical applications. V. Kotamraju, S. Payandeh, J. Dill Experimental Robotics Laboratory,
Problem-Solving Environments: The Next Level in Software Integration David W. Walker Cardiff University.
Technische Universität München Benefits of Structured Cartesian Grids for the Simulation of Fluid- Structure Interactions Miriam Mehl Department of Computer.
Chapter 1 and 2 Computer System and Operating System Overview
Cache-Optimal Parallel Solution of PDEs Ch. Zenger Informatik V, TU München Finite Element Solution of PDEs Christoph Zenger Nadine Dieminger, Frank Günther,
Functional Simulation Overview1 OpenTV PC Simulator.
Hydro Models Team. Introduction RHESSys is a spatially distributed model of watershed carbon, water and nutrient dynamics. RHESSys stands for Regional.
Introduction Multigrid finite-element solvers using the corotational formulation of finite elements provide an attractive means for the simulation of deformable.
Parallelization: Conway’s Game of Life. Cellular automata: Important for science Biology – Mapping brain tumor growth Ecology – Interactions of species.
1CPSD NSF/DARPA OPAAL Adaptive Parallelization Strategies using Data-driven Objects Laxmikant Kale First Annual Review October 1999, Iowa City.
Alok 1Northwestern University Access Patterns, Metadata, and Performance Alok Choudhary and Wei-Keng Liao Department of ECE,
The Old World Meets the New: Utilizing Java Technology to Revitalize and Enhance NASA Scientific Legacy Code Michael D. Elder Furman University Hayden.
Virtual Geophysics Laboratory Exploiting the Cloud and Empowering Geophysicists Ryan Fraser, Terry Rankine, Lesley Wyborn, Joshua Vote, Ben Evans. Presented.
1 Cactus in a nutshell... n Cactus facilitates parallel code design, it enables platform independent computations and encourages collaborative code development.
Introduction Surgical training environments as well as pre- and intra-operative planning environments require physics-based simulation systems to achieve.
Visualisation of Plasma in Fusion Devices Interactive European Grid 30 th May 2007.
VIRTUAL REALITY Sagar.Khadabadi. Introduction The very first idea of it was presented by Ivan Sutherland in 1965: “make that (virtual) world in the window.
What is Computer Science? “Computer Science is no more about computers than astronomy is about telescopes.” - Edsger Dijkstra “Computer Science is no more.
1 The Rendering Pipeline. CS788 Topic of HCI 2 Outline  Introduction  The Graphics Rendering Pipeline  Three functional stages  Example  Bottleneck.
Automotive Soiling Simulation Based On Massive Particle Tracing Stefan Röttger Martin Schulz Wolf Bartelheimer Thomas Ertl Visualization and Interactive.
A Framework for Visualizing Science at the Petascale and Beyond Kelly Gaither Research Scientist Associate Director, Data and Information Analysis Texas.
BalticGrid-II Project The Second BalticGrid-II All-Hands Meeting, Riga, May, Joint Research Activity Enhanced Application Services on Sustainable.
1 1  Capabilities: Building blocks for block-structured AMR codes for solving time-dependent PDE’s Functionality for [1…6]D, mixed-dimension building.
Cactus/TIKSL/KDI/Portal Synch Day. Agenda n Main Goals:  Overview of Cactus, TIKSL, KDI, and Portal efforts  present plans for each project  make sure.
1 Typical performance bottlenecks and how they can be found Bert Wesarg ZIH, Technische Universität Dresden.
Grid Enabled Neurosurgical Imaging Using Simulation
Cracow Grid Workshop, November 5-6, 2001 Concepts for implementing adaptive finite element codes for grid computing Krzysztof Banaś, Joanna Płażek Cracow.
Connections to Other Packages The Cactus Team Albert Einstein Institute
LaHave House Project 1 LaHave House Project Automated Architectural Design BML + ARC.
GUI For Computer Architecture May01-05 Team Members: Neil HansenCprE Ben JonesCprE Jon MathewsCprE Sergey SannikovCprE Clients/Advisors: Manimaran Govindarasu.
Large Scale Time-Varying Data Visualization Han-Wei Shen Department of Computer and Information Science The Ohio State University.
Anton, a Special-Purpose Machine for Molecular Dynamics Simulation By David E. Shaw et al Presented by Bob Koutsoyannis.
Generic GUI – Thoughts to Share Jinping Gwo EMSGi.org.
10th of June 2005 Chair for Computer Aided Medical Procedures & Augmented Reality Department of Computer Science | Technische Universität München Chair.
CS 351/ IT 351 Modeling and Simulation Technologies HPC Architectures Dr. Jim Holten.
Parallelization Strategies Laxmikant Kale. Overview OpenMP Strategies Need for adaptive strategies –Object migration based dynamic load balancing –Minimal.
Geometry processing on GPUs Jens Krüger Technische Universität München.
I MAGIS is a joint project of CNRS - INPG - INRIA - UJF iMAGIS-GRAVIR / IMAG Efficient Parallel Refinement for Hierarchical Radiosity on a DSM computer.
Motivation: dynamic apps Rocket center applications: –exhibit irregular structure, dynamic behavior, and need adaptive control strategies. Geometries are.
Eric Minner & James Pittman. Outline Project Statement / Motivation Concept overview Quick computer vision overview Demo Lessons Learned Future Work.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Dynamic Geometry Displacement Jens Krüger Technische Universität München.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Lab Course CFD Introduction Dr. Miriam Mehl. CFD – Applications stirrers.
Scientific Computing Goals Past progress Future. Goals Numerical algorithms & computational strategies Solve specific set of problems associated with.
1 07/11/07 Using an Event-Based Approach to Improve the Multimodal Rendering of 6DOF Virtual Contact Jean Sreng, Florian Bergez, Jérémie Le Garrec, Anatole.
BES III Software: Beta Release Plan Weidong Li 19 th October 2005.
HAPTIC SYSTEMS.
Technische Universität München Peano 2. Technische Universität München Peano 2, Jun Features of Peano Adaptive Cartesian Grids –Arbitrary.
VisIt Project Overview
Department of Computer Science, TU München
International Institute of Information Technology, Hyderabad
So far we have covered … Basic visualization algorithms
PreOpenSeesPost: a Generic Interface for OpenSees
Introduction to Scientific Computing II
Efficient Parallel Simulation of Fluid Dynamics on Cartesian Grids
Physics-based simulation for visual computing applications
Introduction to Scientific Computing II
Short Course Siena, 5-6 October 2006
Presentation transcript:

Technische Universität München KONWIHR II – Computational Steering Miriam Mehl Juni 2009

Technische Universität München 30. April 2009 Outline motivation involved codes related projects work in progress first results outlook acknowledgements

Technische Universität München 30. April 2009 Outline motivation involved codes related projects work in progress first results outlook acknowledgements

Technische Universität München 30. April 2009 Motivation fast interactive computations accurate analysis on HPC systems smooth integration of both

Technische Universität München 30. April 2009 Outline motivation involved codes related projects work in progress first results outlook acknowledgements

Technische Universität München 30. April 2009 Involved Codes – Peano PDE Framwork event-driven application plug-in hierarchical multilevel data high memory efficiency parallelisation + load balancing

Technische Universität München 30. April 2009 Involved Codes – iFluids Lattice-Boltzmann flow solver Parallelisation Steering –orthoslices –streamlines –remote computations and rendering (Hitachi, e.g.) –local visualisation –MPI communication KONWIHR I

Technische Universität München 30. April 2009 Outline motivation involved codes related projects work in progress first results outlook acknowledgements

Technische Universität München 30. April 2009 Related Projects virtual climate chamber Source: Jérôme Frisch

Technische Universität München 30. April 2009 Related Projects aktuelle Rand- bedingungen THERMOREGULATION INTERFACE THESEUS-FE Solver iFluids, CFX, … VCC GUI param. Geometrie- modell.hdf.tfe Geometrie aktuelle Rand- bedingungen Temperatur- daten (o.ä.) Temperatur- daten (o.ä.) Visualisierung Globale Änderungen (als NAS Datei) Benutzer virtual climate chamber Source: Jérôme Frisch

Technische Universität München 30. April 2009 Related Projects virtual climate chamber Source: Jérôme Frisch

Technische Universität München 30. April 2009 Related Projects computational steering for orthopeadics (IGSSE 1-7) –structural mechnanics –finite cell method –in cooperation with Westermann (visualisation) Source: Martin Ruess

Technische Universität München 30. April 2009 Related Projects computational steering for orthopeadics (IGSSE 1-7) –work in progress Source: Martin Ruess

Technische Universität München 30. April 2009 Outline motivation involved codes related projects work in progress first results outlook acknowledgements

Technische Universität München 30. April 2009 Work in Progress exploit hierarchy –very fast first response on interactive changes –successive refinement during interactive communication –smooth integration of HPC batch jobs for accurate analysis –h-refinement (Peano), p-refinement (Adhoc) fast response accurate analysis (HPC) successive refinement

Technische Universität München 30. April 2009 Work in Progress exploit hierarchy –very fast first response on interactive changes –successive refinement during interactive communication –smooth integration of HPC batch jobs for accurate analysis –h-refinement (Peano), p-refinement (Adhoc) input stream stacks output stream new dof eliminated dof

Technische Universität München 30. April 2009 Work in Progress direct interaction with 3D data –geometry changes / deformations DATA FILTERMAPPING DISPLAY Visualization algorithms Interactive feedback Source: Atanas Atanasov

Technische Universität München 30. April 2009 Outline motivation involved codes related projects work in progress first results outlook acknowledgements

Technische Universität München 30. April 2009 First Results computational steering with Peano – user interface Source: Atanas Atanasov

Technische Universität München 30. April 2009 First Results computational steering with Peano – visualisation –streamlines Source: Atanas Atanasov

Technische Universität München 30. April 2009 First Results computational steering with Peano – visualisation –glyphs Source: Atanas Atanasov

Technische Universität München 30. April 2009 First Results computational steering with Peano – visualisation –isosurfaces –slices Source: Atanas Atanasov

Technische Universität München 30. April 2009 Outline motivation involved codes related projects work in progress first results outlook acknowledgements

Technische Universität München 30. April 2009 Outlook further exploitation of hierarchy with Peano finishing of the direct interaction with 3D data adaption of iFluids for HLRBII integration of particle simulation

Technische Universität München 30. April 2009 Outline motivation involved codes related projects work in progress first results outlook acknowledgements

Technische Universität München 30. April 2009 Acknowledgements Prof. Hans-Joachim Bungartz Prof. Ernst Rank Dr. Christoph van Treek Dr. Martin Ruess Dr. Ralf Mundani Tobias Neckel Jérôme Frisch Atanas Atanasov