Electric Currents Topic 5.2 Electric Circuits. Electromotive Force Defining potential difference Defining potential difference The coulombs entering a.

Slides:



Advertisements
Similar presentations
Current Electricity & Ohm's Law.
Advertisements

AS Level Electricity - Circuits
+ V (Volt) = W (work done, J) Q (charge, C)
DYNAMIC ELECTRICITY.
Electric Currents Topic 5
S2 Science Our Physical World Part 3 Knox Academy Science Department 1. Introduction to static electricity By the end of lesson 1, pupils should be able.
Current. Current Current is defined as the flow of positive charge. Current is defined as the flow of positive charge. I = Q/t I = Q/t I: current in Amperes.
P2.3.1 – Static Electricity. Objectives, to understand that: –When certain electrical insulators are rubbed together they become electrically charged.
Electric Circuits  To calculate the size of a current from the charge flow and time taken Thursday, August 06, 2015.
The Potential Divider Electricity Lesson 10. Learning Objectives To know what a potential divider is. To derive and know how to use the potential divider.
Week 04, Day 2 W10D2 DC Circuits Today’s Reading Assignment W10D2 DC Circuits & Kirchhoff’s Loop Rules Course Notes: Sections Class 09 1.
1.3b Current Electricity Direct Current Circuits Breithaupt pages 58 to 71 October 5 th, 2010.
Teaching note Just in case you have never tried this before. This is split into 6 spaced learning presentations. The idea is that each one is presented.
Electricity and Magnetism Topic 5.2 Electric Circuits.
Topic 5.1 Electric potential difference, current and resistance
Electromotive Force and Potential Difference
MHS Physics Department AP Unit III C 2 Steady state direct current circuits with batteries and resistors only.
Electricity - Basic ideas… Electric current is when electrons start to flow around a circuit. We use an _________ to measure it and it is measured in ____.
P5 – Electric Circuits. Static Electricity When two objects are rubbed together and become charged, electrons are transferred from one object to the other.
5: Electric Current 5.2 Electric Circuits.
Electricity Define electric potential difference Determine the change in potential energy when a charge moves between two points at different.
Electricity – Potential Difference
Definition of Potential Difference p.d. of 1 Volt when 1 joule of work is required to move 1 coulomb of charge. Example Calculate the work done in moving.
3 rd /4 th form – Electric circuits. Conductors and insulators An electric current is a flow of charge. These charges are often electrons. Electrons carry.
Conductors Metals and graphite are electrical conductors. Electrons are free to move in conductors. Electrons are negatively charged. The electrons carry.
Topic 5.1 Electric potential difference, current and resistance
19.4 Sources of electromotive force
Potential difference and electromotive force.
Topic 5.1 Electric potential difference, current and resistance
Short circuiting a battery demo… Dangerous ? High current?
Phys 2180 Lecture (5) Current and resistance and Direct current circuits.
Physics ( ) Electrical Circuits Varying Resistance © SSER Ltd.
Chapter 28 Direct Current Circuits. Introduction In this chapter we will look at simple circuits powered by devices that create a constant potential difference.
CLASS :- X MADE BY :- MANAS MAHAJAN SCHOOL :- K.V. GANESHKHIND PUNE-7
Unit G482: Electrons, Waves and Photons
Electromotive Force and Internal Resistance Before we start, the golden rules from GCSE:  The ? through any components connected in series is the same.
Electromotive force. Learning Objectives (a) recall and use appropriate circuit symbols as set out in SI Units, Signs, Symbols and Abbreviations (ASE,
5.2.1Define electromotive force Describe the concept of internal resistance. Topic 5: Electric currents 5.2 Electric circuits.
Chapter 20 Circuits And Circuit Elements Schematic Diagrams and Circuits Objectives 1.Interpret and construct circuit diagrams 2. Identify circuits.
SOLUTION OF ELECTRIC CIRCUIT. ELECTRIC CIRCUIT AN ELECTRIC CIRCUIT IS A CONFIGURATION OF ELECTRONIC COMPONENTS THROUGH WHICH ELECTRICITY IS MADE TO FLOW.
Electricity Revision Notes p.1 Current = charge transferred per second I = Q / t Potential Difference = difference in energy per coulomb of charge between.
EMF and Internal Resistance Electricity Lesson 8.
5.2.2 D.C. Circuits Practical circuits Electromotive force and internal resistance Kirchhoff’s laws Series and parallel arrangements Potential divider.
PHYSICS – Electric circuits
Electric Circuits and Electric Current  A flashlight, an electric toaster, and a car’s starting motor all involve electric circuits and electric current.
Simple Electric Circuits. Menu Circuit Symbols Current Voltage Resistance Summary Table.
CircuitBasic Definitions 1 Basic Definitions Circuit : path through which charges flow Three parts : source (e.g. cell), load (e.g. lamp), conductors.
Electrical circuits P2 – part 2. Common components.
A –Level Physics: Electrical Quantities: Internal Resistance
Using IB symbols - sketch a series circuit including
Current is the rate of flow of….. Energy Charge protons
Cell energy ☺ electron lamp.
Direct current circuits
Series Circuit.
Chapter 17 Current electricity
Potential Divider Aims What is a potential divider
Series Circuit – 1 bulb Series Circuit – 1 bulb.
E.M.F and Internal Resistance
AS Level Electricity - Circuits
Direct Current Circuits
Circuit Symbols Switch (open): Switch (closed): Battery: Cell:
Electrical Circuits Varying Resistance
Unit 1 Electricity Electric Fields and Potential Difference
Electricity and Magnetism
Science 9 Electricity Review.
P2 - Physics Circuits.
Emf and internal resistance
Potential dividers (j) show an understanding of the use of a potential divider circuit as a source of variable p.d. (k) explain the use of thermistors.
Unit 1 Electricity Electric Fields and Potential Difference
Presentation transcript:

Electric Currents Topic 5.2 Electric Circuits

Electromotive Force Defining potential difference Defining potential difference The coulombs entering a lamp have electrical potential energy; The coulombs entering a lamp have electrical potential energy; those leaving have very little potential energy. those leaving have very little potential energy. There is a potential difference (or p.d.) across the lamp, because the potential energy of each coulomb has been transferred to heat and light within the lamp. There is a potential difference (or p.d.) across the lamp, because the potential energy of each coulomb has been transferred to heat and light within the lamp. p.d. is measured in volts (V) and is often called voltage. p.d. is measured in volts (V) and is often called voltage.

The p.d. between two points is the electrical potential energy transferred to other forms, per coulomb of charge that passes between the two points. The p.d. between two points is the electrical potential energy transferred to other forms, per coulomb of charge that passes between the two points.

Resistors and bulbs transfer electrical energy to other forms, but which components provide electrical energy? Resistors and bulbs transfer electrical energy to other forms, but which components provide electrical energy? A dry cell, a dynamo and a solar cell are some examples. A dry cell, a dynamo and a solar cell are some examples. Any component that supplies electrical energy is a source of electromotive force or e.m.f. Any component that supplies electrical energy is a source of electromotive force or e.m.f. It is measured in volts. It is measured in volts. The e.m.f. of a dry cell is 1.5 V, that of a car battery is 12 V The e.m.f. of a dry cell is 1.5 V, that of a car battery is 12 V

A battery transfers chemical energy to electrical energy, so that as each coulomb moves through the battery it gains electrical potential energy. A battery transfers chemical energy to electrical energy, so that as each coulomb moves through the battery it gains electrical potential energy. The greater the e.m.f. of a source, the more energy is transferred per coulomb. In fact: The greater the e.m.f. of a source, the more energy is transferred per coulomb. In fact: The e.m.f of a source is the electrical potential energy transferred from other forms, per coulomb of charge that passes through the source. The e.m.f of a source is the electrical potential energy transferred from other forms, per coulomb of charge that passes through the source. Compare this definition with the definition of p.d. and make sure you know the difference between them. Compare this definition with the definition of p.d. and make sure you know the difference between them.

Internal Resistance

The cell gives 1.5 joules of electrical energy to each coulomb that passes through it, The cell gives 1.5 joules of electrical energy to each coulomb that passes through it, but the electrical energy transferred in the resistor is less than 1.5 joules per coulomb and can vary. but the electrical energy transferred in the resistor is less than 1.5 joules per coulomb and can vary. The circuit seems to be losing energy ‑ can you think where? The circuit seems to be losing energy ‑ can you think where?

Internal Resistance The cell itself has some resistance, its internal resistance. The cell itself has some resistance, its internal resistance. Each coulomb gains energy as it travels through the cell, but some of this energy is wasted or `lost' as the coulombs move against the resistance of the cell itself. Each coulomb gains energy as it travels through the cell, but some of this energy is wasted or `lost' as the coulombs move against the resistance of the cell itself. So, the energy delivered by each coulomb to the circuit is LESS than the energy supplied to each coulomb by the cell. So, the energy delivered by each coulomb to the circuit is LESS than the energy supplied to each coulomb by the cell.

Very often the internal resistance is small and can be ignored. Very often the internal resistance is small and can be ignored. Dry cells, however, have a significant internal resistance. Dry cells, however, have a significant internal resistance. This is why a battery can become hot when supplying electric current. This is why a battery can become hot when supplying electric current. The wasted energy is dissipated as heat. The wasted energy is dissipated as heat.

Resistance Combinations

Resistors in series

Suppose we replace the 3 resistors with one resistor R that will take the same current I when the same p.d. V is placed across it Suppose we replace the 3 resistors with one resistor R that will take the same current I when the same p.d. V is placed across it

Let's calculate R. Let's calculate R. What can we say about voltage across resistors in series? What can we say about voltage across resistors in series? V = V l + V 2 + V 3 V = V l + V 2 + V 3 But for any resistor: p.d. = current x resistance (V = I R). But for any resistor: p.d. = current x resistance (V = I R). If we apply this to each of our resistors, and remember that the current through each resistor is the same and equal to I, we get: If we apply this to each of our resistors, and remember that the current through each resistor is the same and equal to I, we get: IR = IR l +IR 2 +IR 3 IR = IR l +IR 2 +IR 3 If we now divide each term in the equation by I, we get: If we now divide each term in the equation by I, we get: R = R 1 + R 2 + R 3 R = R 1 + R 2 + R 3

Resistors in Series There are 3 facts that you should know for a series circuit: There are 3 facts that you should know for a series circuit: the current through each resistor in series is the same the current through each resistor in series is the same the total p.d., V across the resistors is the sum of the p.d.s across the separate resistors, so: V = V l + V 2 + V 3 the total p.d., V across the resistors is the sum of the p.d.s across the separate resistors, so: V = V l + V 2 + V 3 the combined resistance R in the circuit is the sum of the separate resistors the combined resistance R in the circuit is the sum of the separate resistors

Resistors in parallel

Suppose we replace the 3 resistors with one resistor R that takes the same total current I when the same p.d. V is placed across it. Suppose we replace the 3 resistors with one resistor R that takes the same total current I when the same p.d. V is placed across it.

Let's calculate R. Let's calculate R. What can we say about the current for resistors in parallel? What can we say about the current for resistors in parallel? I = I 1 +I 2 +I 3 I = I 1 +I 2 +I 3 But for any resistor, current = p.d. / resistance (I = V/R ). But for any resistor, current = p.d. / resistance (I = V/R ). If we apply this to each of our resistors, and remember that the If we apply this to each of our resistors, and remember that the p.d. across each resistor is the same and equal to V, p.d. across each resistor is the same and equal to V, we get:V/R=V/R 1 + V/R 2 + V/R 3 we get:V/R=V/R 1 + V/R 2 + V/R 3 Now we divide each term by V, to get: Now we divide each term by V, to get: 1/R=1/R 1 + 1/R 2 + 1/R 3 1/R=1/R 1 + 1/R 2 + 1/R 3

Resistors in Parallel There are 3 facts that you should know for a parallel circuit: There are 3 facts that you should know for a parallel circuit: the p.d. across each resistor in parallel is the same the p.d. across each resistor in parallel is the same the current in the main circuit is the sum of the currents in each of the parallel branches, so: the current in the main circuit is the sum of the currents in each of the parallel branches, so: I = I 1 + I 2 + I 3 I = I 1 + I 2 + I 3 the combined resistance R is calculated from the equation: the combined resistance R is calculated from the equation:

You will find that the total resistance R is always less than the smallest resistance in the parallel combination. You will find that the total resistance R is always less than the smallest resistance in the parallel combination.

Circuit Diagrams You need to be able to recognize and use the accepted circuit symbols included in the Physics Data Booklet You need to be able to recognize and use the accepted circuit symbols included in the Physics Data Booklet Draw a circuit diagram showing a complete circuit of a cell connected to a switch, a lamp, a potentiometer and a voltmeter measuring the p.d across the lamp, and an ammeter measuring the current going into the lamp. Draw a circuit diagram showing a complete circuit of a cell connected to a switch, a lamp, a potentiometer and a voltmeter measuring the p.d across the lamp, and an ammeter measuring the current going into the lamp.

Ammeters and Voltmeters In order to measure the current, an ammeter is placed in series, in the circuit. In order to measure the current, an ammeter is placed in series, in the circuit. What effect might this have on the size of the current? What effect might this have on the size of the current? The ideal ammeter has zero resistance, so that placing it in the circuit does not make the current smaller. The ideal ammeter has zero resistance, so that placing it in the circuit does not make the current smaller. Real ammeters do have very small resistances ‑ around 0.01 Ω. Real ammeters do have very small resistances ‑ around 0.01 Ω.

A voltmeter is connected in parallel with a component, in order to measure the p.d. across it. A voltmeter is connected in parallel with a component, in order to measure the p.d. across it. Why can this increase the current in the circuit? Why can this increase the current in the circuit? Since the voltmeter is in parallel with the component, their combined resistance is less than the component's resistance. Since the voltmeter is in parallel with the component, their combined resistance is less than the component's resistance. The ideal voltmeter has infinite resistance and takes no current. The ideal voltmeter has infinite resistance and takes no current. Digital voltmeters have very high resistances, around 10 MΩ, and so they have little effect on the circuit they are placed in. Digital voltmeters have very high resistances, around 10 MΩ, and so they have little effect on the circuit they are placed in.

Potential dividers A potential divider is a device or a circuit that uses two (or more) resistors or a variable resistor (potentiometer) to provide a fraction of the available voltage (p.d.) from the supply. A potential divider is a device or a circuit that uses two (or more) resistors or a variable resistor (potentiometer) to provide a fraction of the available voltage (p.d.) from the supply.

The p.d. from the supply is divided across the resistors in direct proportion to their individual resistances. The p.d. from the supply is divided across the resistors in direct proportion to their individual resistances.

Take the fixed resistance circuit - this is a series circuit therefore the current in the same at all points. Take the fixed resistance circuit - this is a series circuit therefore the current in the same at all points. I supply = I 1 = I 2 I supply = I 1 = I 2 Where I 1 = current through R 1 Where I 1 = current through R 1 I 2 = current through R 2 I 2 = current through R 2

Using Ohm’s Law Using Ohm’s Law

Example

With sensors A thermistor is a device which will usually decrease in resistance with increasing temperature. ( NTC – Negative Temperature Coefficient) A thermistor is a device which will usually decrease in resistance with increasing temperature. ( NTC – Negative Temperature Coefficient) A light dependent resistor, LDR, will decrease in resistance with increasing light intensity. (Light Decreases its Resistance). A light dependent resistor, LDR, will decrease in resistance with increasing light intensity. (Light Decreases its Resistance).

Example Calculate the readings on the meters shown below when the thermistor has a resistance of Calculate the readings on the meters shown below when the thermistor has a resistance of a) 1 kΩ (warm conditions) a) 1 kΩ (warm conditions) b) 16 k Ω (cold conditions) b) 16 k Ω (cold conditions)