Viscous hydrodynamics DPF 2009 Huichao Song The Ohio State University Supported by DOE 07/30/2009 July 27-July 31, Detroit, MI with shear and bulk viscosity.

Slides:



Advertisements
Similar presentations
QGP Viscosity & Elliptic Flow for Multi-strange Hadrons
Advertisements

Dynamic Modeling for Relativistic Heavy Ion Collisions
Huichao Song The Ohio State University Lawrence Berkeley National Lab Viscous Hydro +URQMD In collaboration with S.Bass, U.Heinz, C.Shen, P.Huovinen &
New Results from Viscous Hydro + URQMD (VISHNU) International School for High Energy Nuclear Collisions, Wuhan, Oct 31- Nov.5, 2011 References: Supported.
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
In relativistic heavy ion collisions a high energy density matter Quark-Gluon Plasma (QGP) may be formed. Various signals have been proposed which probe.
First Results From a Hydro + Boltzmann Hybrid Approach DPG-Tagung, Darmstadt, , Hannah Petersen, Universität Frankfurt.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
1 Questions about sQGP Carlos Arguello Columbia University 24 th Winter Workshop on Nuclear Dynamics April 10 th 2008.
Measuring initial temperature through Photon to dilepton ratio Collaborators: Jan-e Alam, Sourav Sarkar & Bikash Sinha Variable Energy Cyclotron Centre,
Winter Workshop on Nuclear Dynamics, Feb 2011 Centrality dependence of number and transverse momentum correlations in Au+Au collisions at 200 GeV Monika.
Roy A. Lacey, Stony Brook; 24 th Winter Workshop on Nuclear Dynamics, April 5-12, Roy A. Lacey Prospects for locating the QCD Critical End Point.
Collective Flow Effects and Energy Loss in ultrarelativistic Heavy Ion Collisions Zhe Xu USTC, Hefei, July 11, 2008 with A. El, O. Fochler, C. Greiner.
Properties of the Quantum Fluid at RHIC Strangeness in Quark Matter March 26-31, 2006.
The centrality dependence of elliptic flow Jean-Yves Ollitrault, Clément Gombeaud (Saclay), Hans-Joachim Drescher, Adrian Dumitru (Frankfurt) nucl-th/
A derivation of the source term induced by a fast parton from the quark energy-momentum tensor Bryon Neufeld, LANL Winter Workshop on Nuclear Dynamics.
WWND, San Diego1 Scaling Characteristics of Azimuthal Anisotropy at RHIC Michael Issah SUNY Stony Brook for the PHENIX Collaboration.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Transverse flow fluctuations:
Effects of Bulk Viscosity at Freezeout Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Nagoya Mini-Workshop.
S C O T T PRATPRAT MICHIGANMICHIGAN S T T E UNIVRSITYUNIVRSITY T H BTBT PUZZLE PUZZLE Z A N D E X T E N D I N G HYRODYNAMICS HYRODYNAMICS.
Viscous hydrodynamics and the QCD equation of state Azwinndini Muronga 1,2 1 Centre for Theoretical Physics and Astrophysics Department of Physics, University.
Viscous hydrodynamics and Transport Models Azwinndini Muronga 1,2 1 Centre for Theoretical Physics and Astrophysics Department of Physics, University of.
Masashi Kaneta, LBNL Masashi Kaneta for the STAR collaboration Lawrence Berkeley National Lab. First results from STAR experiment at RHIC - Soft hadron.
Role of Viscosity in Relativistic Nuclear Collisions Joe Kapusta * University of Minnesota Montreal, 2007 * Collaborators: Laszlo Csernai, Larry McLerran...
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Strongly Interacting Low Viscosity Matter Created in Heavy Ion Collisions Joe Kapusta * University of Minnesota Quark Matter 2006, Shanghai, China * Original.
The effects of viscosity on hydrodynamical evolution of QGP 苏中乾 大连理工大学 Dalian University of Technology.
Longitudinal de-correlation of anisotropic flow in Pb+Pb collisions Victor Roy ITP Goethe University Frankfurt In collaboration with L-G Pang, G-Y Qin,
Workshop for Particle Correlations and Femtoscopy 2011
November 18, Shanghai Anomalous Viscosity of an Expanding Quark-Gluon Plasma Masayuki ASAKAWA Department of Physics, Osaka University S. A.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Viscous Hydrodynamics Heavy Ion Meeting December 10.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Expansion of the Quark- Gluon Plasma.
Viscous hydrodynamics Quark Matter 2009 Huichao Song and Ulrich Heinz The Ohio State University Supported by DOE 04/02/2009 March 30-April 4, Knoxville,
Joint CATHIE/TECHQM Workshop, BNL, Dec 14-18, 2009 Huichao Song The Ohio State University Supported by DOE 12/14/2009 Lawrence Berkeley National Lab QGP.
Effects of bulk viscosity in causal viscous hydrodynamics Jianwei Li, Yugang Ma and Guoliang Ma Shanghai Institute of Applied Physics, CAS 1. Motivation.
ATHIC2014, Osaka, Japan, Aug.5-Aug.8, /05/2014 The Fluid Nature & Viscosity of the QGP Huichao Song Peking University.
QM2012, Washington, DC, Aug. 13-Aug. 18, 2012 Supported by DOE 08/13/2012 QGP viscosity at RHIC and LHC energies Huichao Song Thanks for discussions with.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Steffen A. BassModeling of RHIC Collisions #1 Steffen A. Bass Duke University Relativistic Fluid Dynamics Hybrid Macro+Micro Transport flavor dependent.
Dynamical equilibration of strongly- interacting ‘infinite’ parton matter Vitalii Ozvenchuk, in collaboration with E.Bratkovskaya, O.Linnyk, M.Gorenstein,
Peter Kolb, CIPANP03, May 22, 2003what we learn from hydro1 What did we learn, and what will we learn from Hydro CIPANP 2003 New York City, May 22, 2003.
11/18/2003Tetsufumi Hirano (RBRC)1 Rapidity Dependence of Elliptic Flow from Hydrodynamics Tetsufumi Hirano RIKEN BNL Research Center (Collaboration with.
Scaling of Elliptic Flow for a fluid at Finite Shear Viscosity V. Greco M. Colonna M. Di Toro G. Ferini From the Coulomb Barrier to the Quark-Gluon Plasma,
Elliptic flow and shear viscosity in a parton cascade approach G. Ferini INFN-LNS, Catania P. Castorina, M. Colonna, M. Di Toro, V. Greco.
Shear and Bulk Viscosities of Hot Dense Matter Joe Kapusta University of Minnesota New Results from LHC and RHIC, INT, 25 May 2010.
Results from an Integrated Boltzmann+Hydrodynamics Approach WPCF 2008, Krakau, Jan Steinheimer-Froschauer, Universität Frankfurt.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
School of Collective Dynamics in High-Energy CollisionsLevente Molnar, Purdue University 1 Effect of resonance decays on the extracted kinetic freeze-out.
Hydrodynamic Flow from Fast Particles Jorge Casalderrey-Solana. E. V. Shuryak, D. Teaney SUNY- Stony Brook.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
3-D Hydro: present and future Tetsufumi Hirano Columbia University Second RHIC II Science BNL, Probes of EOS.
June 4, Tokyo Anomalous Viscosity of an Expanding Quark-Gluon Plasma Masayuki ASAKAWA Department of Physics, Osaka University S. A. Bass,
Flow and Dissipation in Ultrarelativistic Heavy Ion Collisions September 16 th 2009, ECT* Italy Akihiko Monnai Department of Physics, The University of.
3 rd Joint Meeting of the Nuclear Physics Divisions of the APS and the JPS October 15 th 2009, Hawaii USA Akihiko Monnai Department of Physics, The University.
Shear Viscosity and Collective Flow in Heavy Ion Collisions within Parton Cascade Calculations Zhe Xu, Carsten Greiner Trento, Sept. 17, 2009 Institut.
1 A simple model to study the centrality dependence of observables from SPS to RHIC energies inspired by the first CuCu results later checked against EPOS.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Evolution with Non-Boost Invariant Flow.
Duke University 野中 千穂 Hadron production in heavy ion collision: Fragmentation and recombination in Collaboration with R. J. Fries (Duke), B. Muller (Duke),
@ Brookhaven National Laboratory April 2008 QCD Critical Point and Its Effects on Physical Observables Schematic Consideration Masayuki ASAKAWA Department.
Hydro + Cascade Model at RHIC
Bulk viscosity in heavy ion collisions
Effects of Bulk Viscosity at Freezeout
Effects of Bulk Viscosity on pT Spectra and Elliptic Flow Coefficients
Spectral shapes in pp collisions
Presentation transcript:

Viscous hydrodynamics DPF 2009 Huichao Song The Ohio State University Supported by DOE 07/30/2009 July 27-July 31, Detroit, MI with shear and bulk viscosity in collaboration with Ulrich Heinz

What is viscosity the ability of momentum transfer Shear viscosity –measures the resistance to flow Bulk viscosity –measure the resistance to expansion Determines the dynamics of -volume viscosity compressible fluid

The QGP viscosity -strongly coupled AdS/CFT prediction : D.T. Son et al. ‘01,’05 To extract the QGP viscosity from experimental data, we need viscous hydrodynamics Shear viscosity: uncertainty principle requires a lower limit for -weakly coupled QCD: Kubo formulas: shear viscosity: bulk viscosity: -lattice SU(3) gluon dynamics : -weakly coupled QCD prediction: -lattice SU(3) gluon dynamics : -LET+ assum. of spectral fun. + Lattice data: Bulk viscosity: zero for classical massless particles, reaches a peak near -strongly coupled AdS/CFT prediction: Meyer, PRL08 Meyer, PRD 07 Kharzeev, et al Arnold, Moore & Yaffe, 00,03 Buchel, 07 Gubser, et al Arnold, Dogan & Moore, PRD06

Viscous hydro with shear & bulk viscosity (2 nd order shear-bulk -mixing term (Muronga, Rischke) not included.) Conservation laws: Evolution equations for shear pressure tensor and bulk presurre:

Numerical Results Bulk viscosity: Shear viscosity: Relaxation times: (see later) QGPHRG Min. AdS/CFT prediction

Shear viscosity vs. bulk viscosity (I) -Shear viscosity: decelerate cooling process in early stage accelerate cooling process in middle and late stages -Bulk viscosity: decelerate cooling process Same initial & final conditions ideal hydro viscous hydro-shear only viscous hydro-bulk only Local temperature

Shear viscosity vs. bulk viscosity (II) -shear viscosity: increases radial flow, results in flatter spectra -bulk viscosity: decreases radial flow, results in steeper spectra radial flowspectra Same Initial & final conditions ideal hydro viscous hydro-shear only viscous hydro-bulk only

Shear viscosity vs. bulk viscosity (III) -v 2 is sensitive to both shear and bulk viscosity Elliptical flow v 2 Same Initial & final conditions ideal hydro viscous hydro-shear only viscous hydro-bulk only

Viscous v2 suppression: shear and bulk viscosity ideal hydro visc. hydro: -at RHIC, 2 x min. bulk viscosity could result in ~50% additional v 2 suppression -when extracting the from RHIC data, bulk viscous effects cannot be neglected 20% 30%

Viscous v2 suppression: shear and bulk viscosity ideal hydro visc. hydro: -at RHIC, 2 x min. bulk viscosity could result in ~50% additional v 2 suppression -when extracting the from RHIC data, bulk viscous effects cannot be neglected 20% 30% bulk viscosity effects: (a) Change the flow profile during hydro evolution (b) Additional spectra correction along freeze-out surface Song & Heinz: v2 will decrease, flow corrections only (a),, at freeze-out Monnai & Hirano:v2 will increase, spectra corrections only(b), ideal hydro for evolution

-relaxation time effects Bulk Viscosity

Bulk viscous v2 suppression: -- Smaller vs. larger relaxation time -viscous effects from bulk viscosity strongly depend on relaxation time and the initialization for bulk pressure

Effects from initialization of (I) Smaller relaxation time -after (several relaxation times), viscous pressure loses memory of initial cond. is insensitive to different initializations of -When is small,

Effects from initialization of (II) -after (several relaxation times), viscous pressure loses memory of initial cond. larger relaxation time is sensitive to different initializations of -When is larger,

Effects from initialization of (III) -viscous effects from bulk viscosity strongly depend on relaxation time and the initialization for bulk pressure Smaller vs. larger relaxation time

--Effects from system size Multiplicity scaling of v 2 /ε and collision energy

Multiplicity scaling of v 2 /ε EOS I - freeze-out condition introduces time scale, breaking scale invariance of id. hydro eqns. - Initial profiles for Cu+Cu and Au+Au systems are not identical after a rescaling Ideal hydrodynamics: multiplicity scaling of v 2 /ε is weakly broken: Viscous hydrodynamics: additional scale breaking by shear viscosity, resulting in fine structure of v 2 /ε: Viscous effects are larger for smaller systems and lower collision energies - for similar initial energy density, Cu+Cu curves are slightly below the Au+Au curves - at fixed, the curves are slightly above the ones full I-S eqn ideal hydro v2 scaling line Song & Heinz PRC 08

good candidate to constrain) Multiplicity scaling of v 2 /ε EOS L - experimental data show qualitatively similar fine ordering as viscous hydro prediction - to reproduce slope of v 2 /ε vs. (1/S)dN/dy, a better description of the highly viscous hadronic stage is needed: T-dependent, viscous hydro + hadron cascade - the experimental v 2 /ε vs. (1/S)dN/dy scaling (slope and fine structure) is another - this requires, however, experimental and theoretical improvements: reduced error bars, accounting for T-dependence of near T c, modeling hadronic phase with realistic cascade full I-S eqn gases dilute hydro region Song & Heinz PRC 08

A Short Summary -When extracting QGP viscosity from experimental data, bulk viscosity effects should not be neglected -More theoretical inputs are needed for bulk viscosity: - relaxation time - initialization for bulk pressure - bulk viscosity of hadronic phase, etc - multiplicity scaling of is a good candidate to extract the QGP viscosity: - larger viscous effects in smaller systems and at lower collision energies - is sensitive to

Thank You 20

EOS

Viscous hydro in 2+1-dimension coordinates --the transport equations for energy momentum tensor are explicit written as: Bjorken approximation: -shear tensor decelerate longitudinal expansion, but accelerate transverse expansion - bulk pressure decelerates both longitudinal & transverse expansion (bulk pressure effectively softens the EoS near the QCD phase transition)

Viscous hydro: a short summary for shear viscosity --shear viscosity only -2+1-d viscous hydro code individually developed by different groups: -v 2 at RHIC is sensitive to even the minimum shear viscosity entropy ratio -v 2 suppression from different groups ranges from 20% to 70% -the above discrepancy was largely resolved by investigating effects from system size, EoS and different forms of I-S eqns. used -Code checking within the TECHQM collaboration: -The first attempt to extract QGP shear viscosity from RHIC data: Luzum & Romatschke, PRC 78 (2008) TECHQM webpage Song & Heinz, PRC 78 (2008) Romatsche & Romatschke (INT), Song & Heinz (OSU), Dusling & Teaney (Stony) Huovinen & Molnar (Purdue), Chaudhuri (Kolkata, India) 70% 20%

Effects from initialization of - is insensitive to different initializations of -after ~1fm/c (several relaxation times), viscous pressure loses memory of initial cond. Song & Heinz, PLB08 & PRC 77(2008) vs. -Effects on entropy production: ~20%