Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Direct Quad-Dominated Anisotropic Remeshing Martin Marinov and Leif Kobbelt.

Slides:



Advertisements
Similar presentations
2D/3D Shape Manipulation, 3D Printing
Advertisements

Application of Angle-Preserving Parameterization: Remeshing.
Surface Compression with Geometric Bandelets Gabriel Peyré Stéphane Mallat.
Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 10 Ravi Ramamoorthi
Discrete Geometry Tutorial 2 1
Xianfeng Gu, Yaling Wang, Tony Chan, Paul Thompson, Shing-Tung Yau
Computer Graphics Group Alexander Hornung Alexander Hornung and Leif Kobbelt RWTH Aachen Robust Reconstruction of Watertight 3D Models from Non-uniformly.
Dual Marching Cubes: An Overview
An Incremental Approach to Feature Aligned Quad Dominant Remeshing ACM Symposium on Solid and Physical Modeling 2008 報告者 : 丁琨桓.
CSE554ContouringSlide 1 CSE 554 Lecture 4: Contouring Fall 2013.
1 Minimum Ratio Contours For Meshes Andrew Clements Hao Zhang gruvi graphics + usability + visualization.
Lapped Textures Emil Praun and Adam Finkelstien (Princeton University) Huges Hoppe (Microsoft Research) SIGGRAPH 2000 Presented by Anteneh.
High-Quality Simplification with Generalized Pair Contractions Pavel Borodin,* Stefan Gumhold, # Michael Guthe,* Reinhard Klein* *University of Bonn, Germany.
Shape from Contours and Multiple Stereo A Hierarchical, Mesh-Based Approach Hendrik Kück, Wolfgang Heidrich, Christian Vogelgsang.
Spherical Parameterization and Remeshing Emil Praun, University of Utah Hugues Hoppe, Microsoft Research.
lecture 4 : Isosurface Extraction
CENG 789 – Digital Geometry Processing 05- Smoothing and Remeshing
Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis Kun Zhou, John Snyder*, Baining Guo, Heung-Yeung Shum Microsoft Research Asia.
Bounded-distortion Piecewise Mesh Parameterization
Polygonal Mesh – Data Structure and Smoothing
Shape Modeling International 2007 – University of Utah, School of Computing Robust Smooth Feature Extraction from Point Clouds Joel Daniels ¹ Linh Ha ¹.
Implicit Surfaces Tom Ouyang January 29, Outline Properties of Implicit Surfaces Polygonization Ways of generating implicit surfaces Applications.
Visualization and graphics research group CIPIC January 30, 2003Multiresolution (ECS 289L) - Winter MAPS – Multiresolution Adaptive Parameterization.
Content Subdivision First some basics (control point polygon, mesh)
Theodoros Athanasiadis Ioannis Fudos Department of Computer Science
FiberMesh: Designing Freeform Surfaces with 3D Curves
Non-Euclidean Embedding
Mesh Parameterization: Theory and Practice Non-Planar Domains.
1 Numerical geometry of non-rigid shapes Non-Euclidean Embedding Non-Euclidean Embedding Lecture 6 © Alexander & Michael Bronstein tosca.cs.technion.ac.il/book.
Consistent Parameterizations Arul Asirvatham Committee Members Emil Praun Hugues Hoppe Peter Shirley.
Smooth Geometry Images Frank Losasso, Hugues Hoppe, Scott Schaefer, Joe Warren.
My Research Experience Cheng Qian. Outline 3D Reconstruction Based on Range Images Color Engineering Thermal Image Restoration.
Intrinsic Parameterization for Surface Meshes Mathieu Desbrun, Mark Meyer, Pierre Alliez CS598MJG Presented by Wei-Wen Feng 2004/10/5.
Gwangju Institute of Science and Technology Intelligent Design and Graphics Laboratory Multi-scale tensor voting for feature extraction from unstructured.
Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces
Graphics Graphics Korea University cgvr.korea.ac.kr Creating Virtual World I 김 창 헌 Department of Computer Science Korea University
Surface Simplification Using Quadric Error Metrics Michael Garland Paul S. Heckbert.
COLLEGE OF ENGINEERING UNIVERSITY OF PORTO COMPUTER GRAPHICS AND INTERFACES / GRAPHICS SYSTEMS JGB / AAS 1 Shading (Shading) & Smooth Shading Graphics.
7.1. Mean Shift Segmentation Idea of mean shift:
1 Surface Applications Fitting Manifold Surfaces To 3D Point Clouds, Cindy Grimm, David Laidlaw and Joseph Crisco. Journal of Biomechanical Engineering,
Why manifolds?. Motivation We know well how to compute with planar domains and functions many graphics and geometric modeling applications involve domains.
INFORMATIK Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normals Max-Planck-Institut für Informatik Saarbrücken, Germany Yutaka.
1 Manifolds from meshes Cindy Grimm and John Hughes, “Modeling Surfaces of Arbitrary Topology using Manifolds”, Siggraph ’95 J. Cotrina Navau and N. Pla.
Triangular Mesh Decimation
Shape Descriptors Thomas Funkhouser and Michael Kazhdan Princeton University Thomas Funkhouser and Michael Kazhdan Princeton University.
Spectral surface reconstruction Reporter: Lincong Fang 24th Sep, 2008.
Solid Modeling. Solid Modeling - Polyhedron A polyhedron is a connected mesh of simple planar polygons that encloses a finite amount of space. A polyhedron.
Extraction and remeshing of ellipsoidal representations from mesh data Patricio Simari Karan Singh.
Mesh Coarsening zhenyu shu Mesh Coarsening Large meshes are commonly used in numerous application area Modern range scanning devices are used.
Geometric Modeling using Polygonal Meshes Lecture 3: Discrete Differential Geometry and its Application to Mesh Processing Office: South B-C Global.
Reconstruction of Solid Models from Oriented Point Sets Misha Kazhdan Johns Hopkins University.
3D Object Modelling and Classification Intelligent Robotics Research Centre (IRRC) Department of Electrical and Computer Systems Engineering Monash University,
A New Voronoi-based Reconstruction Algorithm
Geometric Modeling with Conical Meshes and Developable Surfaces SIGGRAPH 2006 Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang and Wenping.
Automatic Construction of Quad-Based Subdivision Surfaces using Fitmaps Daniele Panozzo, Enrico Puppo DISI - University of Genova, Italy Marco Tarini DICOM.
Lee Byung-Gook Dongseo Univ.
Zl1 A sharpness dependent filter for mesh smoothing Chun-Yen Chen Kuo-Young Cheng available in CAGD Vol.22. 5(2005)
CENG 789 – Digital Geometry Processing 04- Distances, Descriptors and Sampling on Meshes Asst. Prof. Yusuf Sahillioğlu Computer Eng. Dept,, Turkey.
Mesh Resampling Wolfgang Knoll, Reinhard Russ, Cornelia Hasil 1 Institute of Computer Graphics and Algorithms Vienna University of Technology.
A Part-aware Surface Metric for Shape Analysis Rong Liu 1, Hao Zhang 1, Ariel Shamir 2, and Daniel Cohen-Or 3 1 Simon Fraser University, Canada 2 The Interdisciplinary.
COMPUTER GRAPHICS CS 482 – FALL 2015 SEPTEMBER 10, 2015 TRIANGLE MESHES 3D MESHES MESH OPERATIONS.
Level Set Segmentation ~ 9.37 Ki-Chang Kwak.
Bigyan Ankur Mukherjee University of Utah. Given a set of Points P sampled from a surface Σ,  Find a Surface Σ * that “approximates” Σ  Σ * is generally.

Advanced Computer Graphics
Morphing and Shape Processing
The Variety of Subdivision Schemes
Craig Schroeder October 26, 2004
Mesh Parameterization: Theory and Practice
Subdivision Surfaces 고려대학교 컴퓨터 그래픽스 연구실 cgvr.korea.ac.kr.
Presentation transcript:

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Direct Quad-Dominated Anisotropic Remeshing Martin Marinov and Leif Kobbelt

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt CAD meshes

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Meshes from scanned data

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Remeshing Goal: Produce CAD quality mesh elements

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Overview Previous work – Remeshing algorithms – Anisotropic alignment Anisotropic remeshing overview Curvature tensor field estimation Curvature lines integration Meshing Contributions and results

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Remeshing algorithms Connectivity Regularization [Kobbelt et al.'99], [Surazhsky&Gotsman'03]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Remeshing algorithms Isotropic Remeshing [Alliez et al.'03], [Surazhsky et al.'03], [Botsch&Kobbelt'04]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Remeshing algorithms Normal Noise Reduction [Botsch&Kobbelt'01]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Remeshing algorithms Variational Shape Approximation [Cohen-Steiner et al.'04]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Remeshing algorithms Anisotropic Remeshing [Alliez et al.'03]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Anisotropic alignment Approximation properties: – Optimal L 2 [Nadler'86] and L p [Simpson'91] approximation (except for hyperbolic regions) – Optimal normal field approximation (L 2,1 metric)[Cohen-Steiner et al.'04]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Anisotropic elements in CAD Designers and engineers compose models using combinations of anisotropic and isotropic objects Quad elements reflect the symmetry of the shape

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Lines of principal curvature Visual perception of the shape: Line-art drawing [Bradly et al.'85] [Elber'98] [Hertzmann&Zorin'00] [Rössl&Kobbelt'01]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Overview Previous work Anisotropic remeshing overview Curvature tensor field estimation Curvature lines integration Meshing Results

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Curvature tensor field estimation Minimum principal curvature directionsMaximum principal curvature directions

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Curvature lines sampling Minimum curvature linesMaximum curvature lines

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Meshing Minimum and maximum curvature lines intersectionAnisotropic remesh

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Overview Previous work Anisotropic remeshing overview Curvature tensor field estimation – Local tensor flattening – Confidence estimation – Filtering Curvature lines integration Meshing Results

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Curvature tensor field estimation Integrate edge tensors over a surface area B [Cohen-Steiner&Morvan'03]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Local tensor flattening Flattening Barycentric interpolation

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Umbilic points Trisector Wedge Spherical or flat point on the tensor field '92 [Delmarcelle&Hesselink'92], [Tricoche'02]

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Tensor field singularities Where the estimated curvature directions are reliable?

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Confidence estimation High confidence Low confidence

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Tensor field filtering

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Overview Previous work Anisotropic remeshing overview Curvature tensor field estimation Curvature lines integration – Local parameterization approach – Seeding and density estimation – Proximity queries – Line snapping Meshing Results

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Curvature line integration Current sample Integrate the next sample parameterization Next sample Current sample parameterization

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Local parameterization

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Seeding and density estimation – Placing seeds in the most confident regions – Minimum curvature lines samples seed maximum curvature lines and vice versa – Lines density depends on the local curvature estimation and the user-specified approx. tolerance

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Proximity queries Sampling density P-cell Lines' samples are associated with the original mesh faces

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt P-cell evolution P-cell contents maintenance: – Include adjacent faces which are inside the local sampling density r – Remove already included faces which are now outside r

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Isotropic regions Flat, spherical and transition regions Low confidence: Curvature directions not reliable Curvature line-based sampling senseless

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Line snapping

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Overview Previous work Anisotropic remeshing overview Curvature tensor field estimation Curvature lines integration Meshing – Vertices, edges and faces construction Results

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Vertices construction Lines intersections constitute the new mesh vertices Use sample groups corresponding to the original mesh faces for effective computation

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Edges and faces construction Meshing directly in 3D: – Edges are defined between subsequent line's intersections – Use vertex normal information obtained on the original surface – Halfedge structure construction – Convex partitioning of concave faces

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Overview Previous work Anisotropic remeshing overview Curvature tensor field estimation Curvature lines integration Meshing Contributions and results

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Contributions and results Direction propagation into isotropic regions – Confidence estimation – Confidence-based filtering – Line-snapping

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Contributions and results Local parameterization approach – Arbitrary genus meshes handling – Reduces computational burden and simplifies implementation

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Contributions and results Proximity queries algorithm – Dramatically improves the scalability and the performance – Simple data structures

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Comparison to Alliez et al.'03 Alliez et al.'03 – Seeding at umbilic points – Point based sampling in isotropic regions and CDT meshing – Global parameterization – CDT proximity queries Marinov&Kobbelt'04 – Seeding in anisotropic regions – Geodesic line sampling in isotropic regions, quad- dominated meshing – Local parameterization – Fast proximity queries based on the original mesh connectivity

Informatik VIII Computer Graphics & Multimedia Martin Marinov and Leif Kobbelt Future work Improving the distribution of the integrated curvature lines – Global uniformity constraints – Multiresolution approach Improved approximation – Using asymptotic instead of principal directions in hyperbolic regions