HARPS... North Geneva Observatory, Switzerland Francesco Pepe et al.

Slides:



Advertisements
Similar presentations
India’s Perspective on Exoplanet Research
Advertisements

HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
Área de Instrumentación NAHUAL Mechanical Concept Current Status F. Javier Fuentes Instituto de Astrofísica de Canarias September
Radial Velocity follow-up of SWASP-North candidates with SOPHIE (1.93-m OHP) G. Hébrard & F. Bouchy (IAP/OHP)
1 Astronomical Observational Techniques and Instrumentation RIT Course Number Professor Don Figer Telescopes.
Spectrometer Sam Valerio. Shows spectral distribution of a light source in the form of a graph. This specific one in the Imaging Science Center is called.
Precision Spectroscopy: some considerations S. Deustua STSCI 2014 STSCI Calibration Workshop 1.
Test Cryostat, OGSE and MGSE PACS IHDR: MPE 12/13 Nov 2003 AIV1 PACS Test Cryostat, OGSE and MGSE Gerd Jakob MPE.
1 Lites FPP-SP Performance SOT #17 Meeting, NAOJ, April Solar-B FPP As-Built Performance of the FPP Spectro- Polarimeter October, 2004 FPP Team Bruce.
K-Space Associates, Inc. kSA BandiT: Band-edge Thermometry.
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
Varun Bhalerao Dual Channel Photometer for KBO search by occultations Varun Bhalerao Advisor: Shri Kulkarni 24 Sep 2007.
HARPS... North HARPS-N PDR Harvard CfA, 06/ Thermal enclosure.
CCD testing Enver Alagoz 12 April CCD testing goals CCD testing is to learn how to – do dark noise characterization – do gain measurements – determine.
Rachel Klima (on behalf of the MASCS team) JHU/APL MASCS/VIRS Data Users’ Workshop LPSC 2014, The Woodlands, TX March 17,2014 MASCS Instrument & VIRS Calibration.
Optical characteristics of the EUV spectrometer (EUS) for SOLO L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia (INFM) Department.
2.4m Telescope Group Yunnan Observatory of CAS Status of LiJET Project & The Coude Echelle Spectrograph for the Lijang 1.8m Telescope China-Japan Collaboration.
Physical Modelling of Instruments Activities in ESO’s Instrumentation Division Florian Kerber, Paul Bristow.
AAO Fibre Instrument Data Simulator 10 October 2011 ROE Workshop 2011 Michael Goodwin Tony Farrell Gayandhi De Silva Scott Smedley Australian Astronomical.
The Field Camera Unit Project definition, organization, planning S. Scuderi INAF – Catania.
Engineering: NAHUAL Ireland Acquisition Camera, Focal Plane Mechanisms and Layout Tully Peacocke, National University of Ireland Maynooth Carlos del Burgo,
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
Precise wavelength reference for Spirou F. Pepe, F. Wildi, B. Chazelas, C. Lovis, S. Udry.
PACS IIDR 01/02 Mar 2001 Instrument Interfaces1 PACS FPU Opto-mechanical Design Overview and Interfaces J. Schubert MPE.
The Doppler Method, or Radial Velocity Detection of Planets: I. Technique 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity.
The quest for precision High Aperture implies lot of photons: High S/N, high precision Open this new parameter space LEGACY Precision: Fidelity, Doppler.
YunNan One Meter Infrared Solar Tower Jun Lin. Why is YNST? After Solar-B launch, what can we do by using of ground-based telescope ? Detailed chromosphere.
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
Spectroscopic Observations (Massey & Hanson 2011, arXiv v2.pdf) Examples of Spectrographs Spectroscopy with CCDs Data Reduction and Calibration.
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
Page 1lOhcO 9 meeting From MDI to HMI Jesper Schou Stanford University
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
Andreas Quirrenbach and the CARMENES Consortium Searching for Blue Planets Orbiting Red Dwarfs.
DECam Daily Flatfield Calibration DECam calibration workshop, TAMU April 20 th, 2009 Jean-Philippe Rheault, Texas A&M University.
JWST Calibration Error Budget Jerry Kriss. 15 March 20072/14 JWST Flux & Wavelength Calibration Requirements SR-20: JWST shall be capable of achieving.
Opto-Mechanics for SNAP at UM
The Prime Focus Imaging Spectrograph Design and Capabilities
1 5-9 October th ICATPP, Como, Italy S. Maltezos NITROGEN MOLECULAR SPECTRA OF AIR FLUORESCENCE EMULATOR USING A LN 2 COOLED CCD S. Maltezos, E.
Henry Heetderks Space Sciences Laboratory, UCB
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
MIRI Dither Patterns Christine H Chen. Dithering Goals 1.Mitigate the effect of bad pixels 2.Obtain sub-pixel sampling 3.Self-calibrate data if changing.
AMS-RICH Detector. J. Berdugo – CIEMAT (Madrid, Spain) 1 AMS-02 Phase II Flight Safety Review AMS Ring Imaging CHerenkov PURPOSE: 1.Precise measurement.
HARPS Data Flow System Christophe Lovis Geneva Observatory HARPS-N PDR, 6-7 December 2007, Cambridge MA.
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
1 System Architecture Mark Herring (Stephen Merkowitz Presenting)
14 January Observational Astronomy SPECTROSCOPIC data reduction Piskunov & Valenti 2002, A&A 385, 1095.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Astronomical Observational Techniques and Instrumentation
RAW DATA BIAS & DARK SUBTRACTION PIXEL-TO-PIXEL DQE CORR. LOCATE EXTR. WINDOW THROUGHPUT CORRECTION (incl. L-flat, blaze function, transmission of optics,
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
PACS IBDR MPE 27/28 Feb 2002 AIV 1 PACS IBDR Test Cryostat and OGSE Gerd Jakob MPE.
The Field Camera Unit Results from technical meeting S. Scuderi INAF – Catania.
GIRAFFE (VLT): A new tool for exoplanets preparatory observations and follow-up Benoît Loeillet (LAM), François Bouchy, Magali Deleuil, Claire Moutou,
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
A. Ealet Berkeley, december Spectrograph calibration Determination of specifications Calibration strategy Note in
Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE.
Digital Light Sources First introduced in 2001.
Agenda ComCam planning and scheduling (James & Jacques) CCS & CCS-TCS Interface (Tony) Software to use ComCam Software to get data out of ComCam (Mike)
A.Zanichelli, B.Garilli, M.Scodeggio, D.Rizzo
Onboard Instruments of ASTROSAT
NIRSpec pipeline concept Guido De Marchi, Tracy Beck, Torsten Böker
Adaptive optics Now: Soon: High angular resolution
An IFU slicer spectrometer for SNAP
Intra-pixel Sensitivity Testing Preliminary Design Review
Introduction to Spectroscopy
Henry Heetderks Space Sciences Laboratory, UCB
Astronomical Observational Techniques and Instrumentation
How we do Spectroscopy An Overview
Presentation transcript:

HARPS... North Geneva Observatory, Switzerland Francesco Pepe et al.

What’s HARPS? Fiber fed, cross-disperser echelle spectrograph Spectral resolution: geometrical 84’000, optical 115’000 Field: 1 arcsec on the sky (HARPS-N: 0.9 arcsec!) Wavelength range: 383 nm nm Sampling: 4 px per geometrical SE (3.3 real) Environmental control Drift measurement via simultaneous thorium

The Doppler measurement cross-correlation mask

Error sources Stellar noise (or any other object) Contaminants (Earth’s atmosphere, moon, etc.) Instrumental noise ✴ Calibration accuracy (any technique) ✴ Instrumental stability (from calibration to measurement) Photon noise

Stellar “noise”: p-modes

Stellar “noise”: Activity

Contaminants: Atmosphere

Photon “noise” Is NOT only SNR !!!! Spectral resolution Spectral type Stellar rotation

Contaminants: Close-by objects

Flux Photon “noise”: Spectral information

Photon “noise”: Spectral resolution

Photon “noise”: Stellar rotation

Instrumental errors External ✴ Illumination of the spectrograph Internal ✴ “Motion” of the spectrum on the detector

Limitations: Telescope centering and guiding Slit spectrograph Δ RV 1 arcsec Stored guiding image for QC

Limitations: Light-feeding Fiber-fed spectrograph Fiber entrance Fiber exit Image scrambler Guiding error: 0.5’’ → 2-3 m/s for a fiber-fed spectrograph

ΔRV = 1 m/s Δ  = A 15 nm 1/1000 pixel ΔRV =1 m/s ΔT = 0.01 K Δp = 0.01 mBar Vacuum operation Temperature control Instrumental stability

Design Elements Fiber feed (mandatory for this techniques) Stable enviroment (gravity, vibrations, etc.) Image Scrambling No moving or sensitive parts after fiber SIMPLE and ROBUST optomechanics “Best” (reasonably) achievable env. control ✴ Vacuum operation ✴ Thermal control High spectral resolution

Instrumental stability

Line (and Instrumental) stability Absolute position on the CCD of a Th line over one month

Object ThAr Simultaneous reference

Object fiber RV 0 ThAr reference Object spectrumThAr spectrum RV 0 Wavelength calibration

Object fiber RV 0 ThAr referenc e Object spectrum ThAr spectrum RV 0 Measurement RV (object) =- RV (measured) RV(drift)

Simultaneous reference

The wavelength calibration px

Instrumental errors: Calibration pixel-position precision ✴ photon noise ✴ blends ✴ pixel inhomogeneities, block stitching errors accuracy of the wavelength standard ✴ systematic errors, Atlas, RSF ✴ instabilities (time, physical conditions: T, p, I) accuracy of the fit algorithm

Calibration: The problem of blends Isolated lines are very rare! Fit neighbouring lines simultaneously with multiple Gaussians

But HARPS-N is also a software concept delivering full precision observables: Scheduling many observations efficiently Full quality pipeline available at the telescope Fully automatic, in “near” realtime, RV computation Link to data analysis Continuous improvements and follow-up

Limiting factors and possible improvements New calibration (and sim. reference) source Perfect guiding and/or scrambling, good IQ needed Improve detector stability (mounting, thermal control)

Subsystem break-down Isolation box Services Fiber run Detector Spectrograph room Adapter LCUs WS CfA OG ESO/OG Spectrograph Vacuum system

Subsystem: Opto-mechanics

Subsystem: Detector

Subsystem: Exposure meter

Exposure meter

Subsystem: Vacuum System

Subsystem: Fiber run

Subsystems: Front end, HW, SW Calibration fibers (0.3mm dia.) CfA

Interfaces CfA - OG I. Detector - Spectrograph II. Fiber run - Front end III. Vacuum System - HARPS Room/Enclosure IV. Electronic components

Detector - Spectrograph ✓ Chip position and tilt ✓ Field-lens tilt ✓ Electrical connectors and cables ✓ Front-amplifier size and location -> ICD between SP and DU

Fiber run - Front end ✓ Fiber-hole position(s) ✓ Mirror position and tilt ✓ Mirror shape (possibly flat !) -> ICD between FR and FE

Vacuum system - Spectrograph Room ✓ Heat load on spectrgraph room ✓ Rail-fixation plate ✓ Location of services ✓ Feed-through window through SR wall ✓ Hoist > 2500 kg -> ICD between VS and SR

Spectrograph electronics Elements to be integrated in SW: ✓ F-200 Temperature controller (conf., read) ✓ Agilent pulse counter (conf., read) ✓ Pfeiffer Digiline P-sensors (read) ✓ Uniblitz shutter controller (read/write) ✓ Lakeshore T-controller for CCD (conf., read) ✓ Lakeshore T-controller for Isolation Box (conf., read) ✓ I-Omega T-controllers for CFC -> temperatures and alarms (read) ✓ LN2-level gauge (read)

Best wishes to HARPS-N

3-level concept Spectrograph room: K Isolation Box: K Spectrograph: K 15°C 17°C

Spectrograph room Model : YORK YEB 3S Serial Nr. : DN003

Room thermal control

Temperature control ✓ Lakeshore 331S T-controller + diode sensors + heaters ✓ 80 mm polysterene panels ✓ Thermal load on Room: 10 W/K

Performances, but...

Leassons learned Concept works well and is simple Changing thermal load through feet produces gradient and seasonal effects ➡ Thermal isolation of feet ➡ Heater below feet, Tref = vacuum vessel

Project schedule OG 2008: Procurement of components 04/ /2009: Manufacturing of mechanical parts for vacuum and optics 01/2009: Start assembly 03/2009: Delivery of FA, DU and Control HW and SW by CfA to OG 04/ /2009: Integration and tests OG