Chapter 6 RAID. Chapter 6 — Storage and Other I/O Topics — 2 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f.

Slides:



Advertisements
Similar presentations
What is RAID Redundant Array of Independent Disks.
Advertisements

1 Lecture 18: RAID n I/O bottleneck n JBOD and SLED n striping and mirroring n classic RAID levels: 1 – 5 n additional RAID levels: 6, 0+1, 10 n RAID usage.
IT 344: Operating Systems Winter 2007 Module 18 Redundant Arrays of Inexpensive Disks (RAID) Chia-Chi Teng CTB 265.
CS 346 – April 4 Mass storage –Disk formatting –Managing swap space –RAID Commitment –Please finish chapter 12.
Faculty of Information Technology Department of Computer Science Computer Organization Chapter 7 External Memory Mohammad Sharaf.
CSE 451: Operating Systems Spring 2012 Module 20 Redundant Arrays of Inexpensive Disks (RAID) Ed Lazowska Allen Center 570 ©
RAID (Redundant Arrays of Independent Disks). Disk organization technique that manages a large number of disks, providing a view of a single disk of High.
I/O Errors 1 Computer Organization II © McQuain RAID Redundant Array of Inexpensive (Independent) Disks – Use multiple smaller disks (c.f.
RAID Oh yes Whats RAID? Redundant Array (of) Independent Disks. A scheme involving multiple disks which replicates data across multiple drives. Methods.
RAID Redundant Array of Independent Disks
Enhanced Availability With RAID CC5493/7493. RAID Redundant Array of Independent Disks RAID is implemented to improve: –IO throughput (speed) and –Availability.
RAID- Redundant Array of Inexpensive Drives. Purpose Provide faster data access and larger storage Provide data redundancy.
RAID Redundant Arrays of Inexpensive Disks –Using lots of disk drives improves: Performance Reliability –Alternative: Specialized, high-performance hardware.
R.A.I.D. Copyright © 2005 by James Hug Redundant Array of Independent (or Inexpensive) Disks.
CSE 486/586 CSE 486/586 Distributed Systems Case Study: Facebook f4 Steve Ko Computer Sciences and Engineering University at Buffalo.
Lecture 36: Chapter 6 Today’s topic –RAID 1. RAID Redundant Array of Inexpensive (Independent) Disks –Use multiple smaller disks (c.f. one large disk)
REDUNDANT ARRAY OF INEXPENSIVE DISCS RAID. What is RAID ? RAID is an acronym for Redundant Array of Independent Drives (or Disks), also known as Redundant.
1 Recap (RAID and Storage Architectures). 2 RAID To increase the availability and the performance (bandwidth) of a storage system, instead of a single.
1 Storage (cont’d) Disk scheduling Reducing seek time (cont’d) Reducing rotational latency RAIDs.
1 Lecture 26: Storage Systems Topics: Storage Systems (Chapter 6), other innovations Final exam stats:  Highest: 95  Mean: 70, Median: 73  Toughest.
I/O Systems and Storage Systems May 22, 2000 Instructor: Gary Kimura.
RAID Systems CS Introduction to Operating Systems.
CSE 451: Operating Systems Winter 2010 Module 13 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Mark Zbikowski Gary Kimura.
Servers Redundant Array of Inexpensive Disks (RAID) –A group of hard disks is called a disk array FIGURE Server with redundant NICs.
Storage System: RAID Questions answered in this lecture: What is RAID? How does one trade-off between: performance, capacity, and reliability? What is.
ICOM 6005 – Database Management Systems Design Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department Lecture 6 – RAID ©Manuel Rodriguez.
Computer Organization CS224 Fall 2012 Lesson 51. Measuring I/O Performance  I/O performance depends on l Hardware: CPU, memory, controllers, buses l.
RAID Shuli Han COSC 573 Presentation.
Storage & Peripherals Disks, Networks, and Other Devices.
CS 352 : Computer Organization and Design University of Wisconsin-Eau Claire Dan Ernst Storage Systems.
CSE 321b Computer Organization (2) تنظيم الحاسب (2) 3 rd year, Computer Engineering Winter 2015 Lecture #4 Dr. Hazem Ibrahim Shehata Dept. of Computer.
Redundant Array of Independent Disks
RAID: High-Performance, Reliable Secondary Storage Mei Qing & Chaoxia Liao Nov. 20, 2003.
Two or more disks Capacity is the same as the total capacity of the drives in the array No fault tolerance-risk of data loss is proportional to the number.
Computer Organization CS224 Fall 2012 Lessons 49 & 50.
N-Tier Client/Server Architectures Chapter 4 Server - RAID Copyright 2002, Dr. Ken Hoganson All rights reserved. OS Kernel Concept RAID – Redundant Array.
I/O – Chapter 8 Introduction Disk Storage and Dependability – 8.2 Buses and other connectors – 8.4 I/O performance measures – 8.6.
RAID COP 5611 Advanced Operating Systems Adapted from Andy Wang’s slides at FSU.
Lecture 9 of Advanced Databases Storage and File Structure (Part II) Instructor: Mr.Ahmed Al Astal.
Redundant Array of Inexpensive Disks aka Redundant Array of Independent Disks (RAID) Modified from CCT slides.
CSI-09 COMMUNICATION TECHNOLOGY FAULT TOLERANCE AUTHOR: V.V. SUBRAHMANYAM.
RAID REDUNDANT ARRAY OF INEXPENSIVE DISKS. Why RAID?
Redundant Array of Independent Disks.  Many systems today need to store many terabytes of data.  Don’t want to use single, large disk  too expensive.
RAID Disk Arrays Hank Levy. 212/5/2015 Basic Problems Disks are improving, but much less fast than CPUs We can use multiple disks for improving performance.
RAID Systems Ver.2.0 Jan 09, 2005 Syam. RAID Primer Redundant Array of Inexpensive Disks random, real-time, redundant, array, assembly, interconnected,
I/O Errors 1 Computer Organization II © McQuain RAID Redundant Array of Inexpensive (Independent) Disks – Use multiple smaller disks (c.f.
CSE 451: Operating Systems Spring 2010 Module 18 Redundant Arrays of Inexpensive Disks (RAID) John Zahorjan Allen Center 534.
CS Introduction to Operating Systems
A Case for Redundant Arrays of Inexpensive Disks (RAID)
Multiple Platters.
Steve Ko Computer Sciences and Engineering University at Buffalo
Steve Ko Computer Sciences and Engineering University at Buffalo
RAID Non-Redundant (RAID Level 0) has the lowest cost of any RAID
CSE 451: Operating Systems Spring 2006 Module 18 Redundant Arrays of Inexpensive Disks (RAID) John Zahorjan Allen Center.
RAID Disk Arrays Hank Levy 1.
RAID Disk Arrays Hank Levy 1.
CSE 451: Operating Systems Spring 2005 Module 17 Redundant Arrays of Inexpensive Disks (RAID) Ed Lazowska Allen Center 570.
CSE 451: Operating Systems Autumn 2010 Module 19 Redundant Arrays of Inexpensive Disks (RAID) Ed Lazowska Allen Center 570.
CSE 451: Operating Systems Winter 2009 Module 13 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Mark Zbikowski Gary Kimura 1.
RAID Redundant Array of Inexpensive (Independent) Disks
UNIT IV RAID.
Mark Zbikowski and Gary Kimura
CSE 451: Operating Systems Autumn 2004 Redundant Arrays of Inexpensive Disks (RAID) Hank Levy 1.
CSE 451: Operating Systems Winter 2012 Redundant Arrays of Inexpensive Disks (RAID) and OS structure Mark Zbikowski Gary Kimura 1.
CSE 451: Operating Systems Winter 2007 Module 18 Redundant Arrays of Inexpensive Disks (RAID) Ed Lazowska Allen Center 570.
CSE 451: Operating Systems Autumn 2009 Module 19 Redundant Arrays of Inexpensive Disks (RAID) Ed Lazowska Allen Center 570.
RAID Disk Arrays Hank Levy 1.
CSE 451: Operating Systems Winter 2004 Module 17 Redundant Arrays of Inexpensive Disks (RAID) Ed Lazowska Allen Center 570.
IT 344: Operating Systems Winter 2007 Module 18 Redundant Arrays of Inexpensive Disks (RAID) Chia-Chi Teng CTB
CSE 451: Operating Systems Winter 2006 Module 18 Redundant Arrays of Inexpensive Disks (RAID) Ed Lazowska Allen Center 570.
Presentation transcript:

Chapter 6 RAID

Chapter 6 — Storage and Other I/O Topics — 2 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for redundant data storage Provides fault tolerant storage system Especially if failed disks can be “hot swapped” RAID 0 No redundancy (“AID”?) Just stripe data over multiple disks But it does improve performance

Chapter 6 — Storage and Other I/O Topics — 3 RAID 1 & 2 RAID 1: Mirroring N + N disks, replicate data Write data to both data disk and mirror disk On disk failure, read from mirror RAID 2: Error correcting code (ECC) N + E disks (e.g., ) Split data at bit level across N disks Generate E-bit ECC Too complex, not used in practice

Chapter 6 — Storage and Other I/O Topics — 4 RAID 3: Bit-Interleaved Parity N + 1 disks Data striped across N disks at byte level Redundant disk stores parity Read access Read all disks Write access Generate new parity and update all disks On failure Use parity to reconstruct missing data Not widely used

Chapter 6 — Storage and Other I/O Topics — 5 RAID 4: Block-Interleaved Parity N + 1 disks Data striped across N disks at block level Redundant disk stores parity for a group of blocks Read access Read only the disk holding the required block Write access Just read disk containing modified block, and parity disk Calculate new parity, update data disk and parity disk On failure Use parity to reconstruct missing data Not widely used

Chapter 6 — Storage and Other I/O Topics — 6 RAID 3 vs RAID 4

Chapter 6 — Storage and Other I/O Topics — 7 RAID 5: Distributed Parity N + 1 disks Like RAID 4, but parity blocks distributed across disks Avoids parity disk being a bottleneck Widely used

Chapter 6 — Storage and Other I/O Topics — 8 RAID 6: P + Q Redundancy N + 2 disks Like RAID 5, but two lots of parity Greater fault tolerance through more redundancy Multiple RAID More advanced systems give similar fault tolerance with better performance

Chapter 6 — Storage and Other I/O Topics — 9 RAID Summary RAID can improve performance and availability High availability requires hot swapping Assumes independent disk failures Too bad if the building burns down! See “Hard Disk Performance, Quality and Reliability”