The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting (2008. 11. 14) C. Y. Ryu Soongsil University, Korea.

Slides:



Advertisements
Similar presentations
Survey of Issues Misak Sargsian Florida International University.
Advertisements

Exotic bulk viscosity and its influence on neutron star r-modes Debades Bandyopadhyay Saha Institute of Nuclear Physics, Kolkata, India Collaborator: Debarati.
Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
Nuclear Physics from the sky Vikram Soni CTP. Strongly Interacting density (> than saturation density) Extra Terrestrial From the Sky No.
Ilona Bednarek Ustroń, 2009 Hyperon Star Model.
Magnetized Strange- Quark-Matter at Finite Temperature July 18, 2012 Latin American Workshop on High-Energy-Physics: Particles and Strings MSc. Ernesto.
The Phase Diagram of Nuclear Matter Oumarou Njoya.
1.Introduction 2.Exotic properties of K nuclei 3.To go forward (Future plan) 4.Summary Dense K nuclei - To go forward - KEK Nuclear KEK, ’06.Aug.3.
Spectra of positive- and negative-energy nucleons in finite nuclei G. Mao 1,2, H. Stöcker 2, and W. Greiner 2 1) Institute of High Energy Physics Chinese.
Xia Zhou & Xiao-ping Zheng The deconfinement phase transition in the interior of neutron stars Huazhong Normal University May 21, 2009 CSQCD Ⅱ.
the equation of state of cold quark gluon plasmas
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
6 June KLH Electromagnetic Probes of Hot and Dense Matter1 The  Puzzle EM Probes of Hot and Dense Matter ECT, Trento, Italy 3-10 June 2005 Kevin.
A New QMC Model Ru-Keng Su Fudan University Hefei.
P. Arumugam Centro de Física das Interacções Fundamentais and Departamento de Física, Instituto Superior Técnico, Lisbon, Portugal S.K. Patra, P.K. Sahu,
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
Isospin effect in asymmetric nuclear matter (with QHD II model) Kie sang JEONG.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Quarks, Leptons and the Big Bang particle physics  Study of fundamental interactions of fundamental particles in Nature  Fundamental interactions.
QGP and Hadrons in Dense medium: a holographic 2nd ATHIC based on works with X. Ge, Y. Matsuo, F. Shu, T. Tsukioka(APCTP), archiv:
Nuclear Symmetry Energy in QCD degree of freedom Phys. Rev. C87 (2013) arXiv: Some preliminary results 2015 HaPhy-HIM Joint meeting Kie.
H. Lenske Institut für Theoretische Physik, U. Giessen Aspects of SU(3) Flavor Physics In-medium Baryon Interactions Covariant Density Functional Theory.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Axel Drees, Stony Brook University, Lectures at Trento June 16-20, 2008 Electromagnetic Radiation form High Energy Heavy Ion Collisions I.Lecture:Study.
Effect of thermal fluctuation of baryons on vector mesons and low mass dileptons ρ ω Sanyasachi Ghosh (VECC, Kolkata, India)
Anthony W. Thomas Nuclei in the Laboratory and in the Cosmos 36 th Course - Erice : Sept 17 th 2014 Hyperons & the EoS of Dense Matter.
B-3 Vaporization – 0 Introduction Generalities A central collision at relativistic energies Hadrons Hadron creation Strangeness production (1) Anisotropy.
Limits of applicability of the currently available EoS at high density matter in neutron stars and core-collapse supernovae: Discussion comments Workshop.
Trento, Giessen-BUU: recent progress T. Gaitanos (JLU-Giessen) Model outline Relativistic transport (GiBUU) (briefly) The transport Eq. in relativistic.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
QMC model with density- and temperature- dependent quark masses Wei-Liang Qian Fudan University.
Hadron-Quark phase transition in high-mass neutron stars Gustavo Contrera (IFLP-CONICET & FCAGLP, La Plata, Argentina) Milva Orsaria (FCAGLP, CONICET,
Interplay of antikaons with hyperons in nuclei and in neutron stars Interplay of antikaons with hyperons in nuclei and in neutron stars 13th International.
Many-body theory of Nuclear Matter and the Hyperon matter puzzle M. Baldo, INFN Catania.
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama.
Nucleon PDF inside Compressed Nuclear Matter Jacek Rozynek NCBJ Warsaw ‘‘Is it possible to maintain my volume constant when the pressure increases?” -
Nuclear Enthalpies J. Rozynek NCBJ Warszawa – arXiv nucl-th ( pedagogical example of volume/pressure corrections to EoS) ‘‘Is it possible to.
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Helmholtz International Summer School, Dubna, 24 July 2008 Pion decay constant in Dense Skyrmion Matter Hee-Jung Lee ( Chungbuk Nat’l Univ.) Collaborators.
Exotic Atoms and Exotic 05,RIKEN 16 Feb. ’05 S. Hirenzaki (Nara Women’s Univ.)
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
Compact Stars With a Dyson- Schwinger Quark Model 1 陈 欢 Collaborate with 魏金标( CUG ), M. Baldo, F. Burgio and H.-J. Schulze ( INFN ). 2015“ 中子星与核天体物理 ”
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
PHYS.NANKAI UNIVERSITY Relativistic equation of state of neutron star matter and supernova matter H. Shen H. Shen Nankai University, Tianjin, China 申虹.
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Relativistic EOS for Supernova Simulations
Electric Dipole Response, Neutron Skin, and Symmetry Energy
-Nucleon Interaction and Nucleon Mass in Dense Baryonic Matter
Quark star RX J and its mass
the CJT Calculation Beyond MFT and its Results in Nuclear Matter
Aspects of the QCD phase diagram
The Structure of Nuclear force in a chiral quark-diquark model
Phase transitions in neutron stars with BHF
Kernfysica: quarks, nucleonen en kernen
ELEMENTARY PARTICLES.
Hyun Kyu Lee Hanyang University
2019/10/7 二倍太阳质量中子星的计算研究 赵先锋 滁州学院 机械与电子工程学院 10/7/2019.
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea

Outline 1. Introduction and motivation - Structure of neutron star - Mass and radius relation - The observed masses of neutrons star - Motivation 2. Theory - Quark-meson coupling model (dense matter) - Exotic phases : hyperons, kaon condensation - Finite temperature 3. Results 4. Summary

1.Introduction and motivation

Hot and dense matter I - Heavy ion collision

Hot and dense matter II - Proto-neutron star The structure of supernovae The production of proto-neutron star

The production of neutron star

The structure of neutron star

The observed masses Maybe, blackhole

Motivation I 1) No strangeness : 2-3 M ๏ 2) Strangeness : 1-2 M ๏ - hyperons(Λ, Σ, Ξ) - kaon condensation - quark matter(u, d, s)

KEK PS-E471 (2004) Deep optical potential V 0 ≈ -120 MeV Y. Akaishi & T. Yamazaki, PRC65 (2002) N. Kaiser, P.B. Siegel & W. Weise, NPA594 (1995) J. Mares, E.Friedman and A. Gal,Nucl.Phys.A770 (2006) Ramos & E. Oset, Nucl. Phys. A671 (2000) V. K. Magas, E.Oset, A.Ramos, H.Toki, nucl-th/ Chirally-motivated potentials Shallow optical potential V 0 ≈ -50 MeV Motivation II - Deeply bound kaonic nuclear states

Model dependency - Haron degree of freedom : Quantum Hadrodynamics (QHD) - Quark degree of freedom : Quark-meson coupling model (QMC) model σ, ω Motivation III

2. Theory

Quark-meson coupling model - MIT bag + mean fields Quark-meson coupling (QMC) model MIT bag + σ, ω mesons σ, ω Neutron star

 Saturation density  0 = 0.17 fm -3  Binding energy B/A = ε/ρ – m N = 16 MeV  Effective mass of a nucleon m N */m N = (0.78)  Compression modulus K -1 = MeV  Symmetric energy a sym = 32.5 MeV The QMC model at saturation 1) Infinite, static and uniform matter 2) The properties of nuclear matter 3) The Lagrangian of QMC model for infinite nuclear matter

QMC model for hyperonic matter σ–ω–ρ(only u(d) quark) + σ*(980) –φ(1050) (only s quark) Lagrangian density for baryon octet and leptons Baryon octet : p, n, Λ, Σ +, Σ 0, Σ -, Ξ 0, Ξ -, lepton : e, μ

Naive picture of K - potential u d d u u 1)OZI rule : s-quark does not interact with u and d quarks p p 2) Antiparticle may feel very strong attraction. 3) Potential of particle Scalar (attractive)+ Vector (repulsive) 4) Potential of antiparticle – strong attraction Scalar (attractive)+ Vector (attractive) σ, ω K-K- u S u

Strong force of K - N and kaon condensation K - pp system Kaon condensation in medium

The RMF for kaon and antikaon Lagrangian density for baryon octet and leptons Langrangian density for kaon The potential of K - : U K- = - gσ – g ω 0

The QMC model at finite temperature 1.Thermodynamic grand potential : Ω = ε – TS - μρ 2. Pressure is Where 3. The condition for equilibrium – minimize Ω or maximize P.

TOV equation Macroscopic part – General relativity Microsopic part – QMC model Einstein field equation : Static and spherical symmetric neutron star (Schwarzschild metric) Static perfect fluid Diag T μν = (ε, p, p, p) TOV equation : equation of state (pressure, energy density)

The conditions in neutron star 1)Baryon number conservation : 2)Charge neutrality : 3)chemical equilibrium (Λ, Σ, Ξ) μ K = μ e ※ The condition for K - condensation

Eq. of state in kaon+hyperonic matter The energy density : The pressure :

3. Results

The population of particles in neutron star

The population of particles in neutron star

The population of particles in neutron star

The mass of a neutron star and kaon condensation

σmeson fields at finite temperature

The effective masses of a nucleon at finite temperature

Summaries 1. Hadronic phases : QHD and QMC models i) Proto-neutron star – 2.0 solar mass ii) Hyperons Solar mass iii) Kaon condensation – solar mass But, we can see the model dependency in both. 2. All results depend on the coupling constants and the potentials of kaon and baryons. – Experiment has to confirm them. 3. If the observed mass is larger than 2.0 solar mass, all exotic phases are ruled out(?). 4. Finite temperature – symmetric matter