Disk Memory Topics Disk Memory Structure Disk Capacity class10.ppt.

Slides:



Advertisements
Similar presentations
Fabián E. Bustamante, Spring 2007 The Memory Hierarchy Today Storage technologies and trends Locality of reference Caching in the memory hierarchy Next.
Advertisements

Carnegie Mellon 1 The Memory Hierarchy : Introduction to Computer Systems 9 th Lecture, Sep. 21, 2010 Instructors: Randy Bryant and Dave O’Hallaron.
Memory Hierarchy and Caching
Instructor: Prof. Jason Fritts
Carnegie Mellon 1 The Memory Hierarchy : Introduction to Computer Systems 9th Lecture, Sep. 21, 2010 Instructors: Randy Bryant and Dave O’Hallaron.
Memory Hierarchy and Caching Summer 2014 COMP 2130 Intro Computer Systems Computing Science Thompson Rivers University.
The Memory Hierarchy September 15th, 2008 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy class09.ppt
IA32 Floating Point History Summary Floating Point Formats
The Memory Hierarchy Apr 26, 2006 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy CS213.
The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy CS213.
The Memory Hierarchy.
The Memory Hierarchy Topics Storage technologies Capacity and latency trends The hierarchy Systems I.
Disk-based Storage Oct. 23, 2008 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy lecture-17.ppt “The.
1 Seoul National University The Memory Hierarchy.
Chapter 6: The Memory Hierarchy Topics  Storage technologies and trends  Locality of reference  Caching in the memory hierarchy  Cache design principles.
Lecture 12: The Memory Hierarchy EEN 312: Processors: Hardware, Software, and Interfacing Department of Electrical and Computer Engineering Spring 2014,
Lecture 17: The Memory Hierarchy CS 2011 Fall 2014, Dr. Rozier.
Carnegie Mellon 1 The Memory Hierarchy / : Introduction to Computer Systems 10 th Lecture, Sep. 27, 2012 Instructors: Dave O’Hallaron, Greg.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition The Memory Hierarchy : Introduction to Computer.
The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy.
CS 105 Tour of the Black Holes of Computing
The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy.
Carnegie Mellon 1 The Memory Hierarchy /18-243: Introduction to Computer Systems 11 th Lecture, 09 June, 2011 Instructors: Gregory Kesden.
The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy.
The Memory Hierarchy Feb. 14, 2008 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy class10.ppt “The.
Carnegie Mellon 1 The Memory Hierarchy / : Introduction to Computer Systems 10 th Lecture, Sep. 29, 2011 Instructors: Dave O’Hallaron, Greg.
1 Memory Hierarchy ( Ⅱ ). 2 Outline Storage technologies and trends Locality The memory hierarchy Cache memories Suggested Reading: 6.1, 6.2, 6.3, 6.4.
The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition The Memory Hierarchy CENG331 - Computer Organization.
The Memory Hierarchy Feb. 20, 2003 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy class12.ppt “The.
The Memory Hierarchy October 5, 2004 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy class11.ppt “The.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition The Memory Hierarchy : Introduction to Computer.
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition The Memory Hierarchy MCS284: Computer Organization.
The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy mem1.ppt CS 105 Tour of the Black Holes.
1 Input/Output: Organization, Disk Performance, and RAID.
Disk-based Storage Oct. 20, 2009 Topics How disk storage fits in systems Performance effects of paging How disks work lecture-15.ppt “The course.
Lecture 15: The Memory Hierarchy CS 2011 Spring 2016, Dr. Rozier.
The Memory Hierarchy January 21, 2002 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy Reading: 6.1 – 6.4 Problems:
Vassar College 1 Jason Waterman, CMPU 224: Computer Organization, Fall 2015 The Memory Hierarchy CMPU 224: Computer Organization Nov 17 th Fall 2015.
Advanced Computer Architecture CS 704 Advanced Computer Architecture Lecture 25 Memory Hierarchy Design (Storage Technologies Trends and Caching) Prof.
The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy mem1.ppt CS 105 Tour of the Black Holes.
Carnegie Mellon 1 The Memory Hierarchy / : Introduction to Computer Systems 10 th Lecture, Sep. 25, 2014 Instructors: Greg Ganger, Greg Kesden,
The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy mem1.ppt CS 105 Tour of the Black Holes.
The Memory Hierarchy Oct 4, 2001 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy class12.ppt “The course.
The Memory Hierarchy Sept 26, 2007 Topics Storage technologies and trends class09.ppt “The course that gives CMU its Zip!”
Carnegie Mellon 1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition The Memory Hierarchy : Introduction to Computer.
CSE 153 Design of Operating Systems Spring 2016 Lecture 13: File Systems.
1 Binghamton University The Memory Hierarchy CS220: Computer Systems II.
Chapter 6: The Memory Hierarchy
CS 105 Tour of the Black Holes of Computing
The Memory Hierarchy CSCE 312
The Memory Hierarchy.
The Memory Hierarchy Instructor: Dr. Hyunyoung Lee
The Memory Hierarchy CSE 238/2038/2138: Systems Programming
The Memory Hierarchy.
The Memory Hierarchy Topics Storage technologies and trends
Instructors: Greg Kesden
CS 201 The Memory Heirarchy
Memory Hierarchy (I).
Slides Courtesy of: Randy Bryant and Dave O’Hallaron
CSE 153 Design of Operating Systems Winter 2018
The Memory Hierarchy /18-213/15-513: Introduction to Computer Systems 11th Lecture, October 2, 2018.
The Memory Hierarchy CSCE312: Computer Organization
The Memory Hierarchy March 12, 2018
Memory Hierarchy (I).
Memory Hierarchy.
CSCI 380 Operating Systems Prof. William Killian
The Memory Hierarchy Professor Hugh C. Lauer CS-2011, Machine Organization and Assembly Language (Slides include copyright materials from Computer Systems:
Instructors: Majd Sakr and Khaled Harras
Memory Hierarchy.
Presentation transcript:

Disk Memory Topics Disk Memory Structure Disk Capacity class10.ppt

– 2 – , F’02 Disk Geometry Disks consist of platters, each with two surfaces. Each surface consists of concentric rings called tracks. Each track consists of sectors separated by gaps. spindle surface tracks track k sectors gaps

– 3 – , F’02 Disk Geometry (Muliple-Platter View) Aligned tracks form a cylinder. Aligned tracks form a cylinder. surface 0 surface 1 surface 2 surface 3 surface 4 surface 5 cylinder k spindle platter 0 platter 1 platter 2

– 4 – , F’02 Disk Capacity Capacity: maximum number of bits that can be stored. Vendors express capacity in units of gigabytes (GB), where 1 GB = 10^9. Capacity is determined by these technology factors: Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track. Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment. Areal density (bits/in2): product of recording and track density. Modern disks partition tracks into disjoint subsets called recording zones Each track in a zone has the same number of sectors, determined by the circumference of innermost track. Each zone has a different number of sectors/track

– 5 – , F’02 Computing Disk Capacity Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk) (# platters/disk)Example: 512 bytes/sector 300 sectors/track (on average) 20,000 tracks/surface 2 surfaces/platter 5 platters/disk Capacity = 512 x 300 x x 2 x 5 = 30,720,000,000 = 30,720,000,000 = GB = GB

– 6 – , F’02 Disk Operation (Single-Platter View) The disk surface spins at a fixed rotational rate spindle By moving radially, the arm can position the read/write head over any track. The read/write head is attached to the end of the arm and flies over the disk surface on a thin cushion of air. spindle

– 7 – , F’02 Disk Operation (Multi-Platter View) arm read/write heads move in unison from cylinder to cylinder spindle

– 8 – , F’02 Disk Access Time Average time to access some target sector approximated by : Taccess = Tavg seek + Tavg rotation + Tavg transfer Seek time (Tavg seek) Time to position heads over cylinder containing target sector. Typical Tavg seek = 9 ms Rotational latency (Tavg rotation) Time waiting for first bit of target sector to pass under r/w head. Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min Transfer time (Tavg transfer) Time to read the bits in the target sector. Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

– 9 – , F’02 Disk Access Time Example Given: Rotational rate = 7,200 RPM Average seek time = 9 ms. Avg # sectors/track = 400.Derived: Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms. Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms Taccess = 9 ms + 4 ms ms Important points: Access time dominated by seek time and rotational latency. First bit in a sector is the most expensive, the rest are free. SRAM access time is about 4 ns/doubleword, DRAM about 60 ns Disk is about 40,000 times slower than SRAM, 2,500 times slower then DRAM.

– 10 – , F’02 Logical Disk Blocks Modern disks present a simpler abstract view of the complex sector geometry: The set of available sectors is modeled as a sequence of b- sized logical blocks (0, 1, 2,...) Mapping between logical blocks and actual (physical) sectors Maintained by hardware/firmware device called disk controller. Converts requests for logical blocks into (surface,track,sector) triples. Allows controller to set aside spare cylinders for each zone. Accounts for the difference in “formatted capacity” and “maximum capacity”.

– 11 – , F’02 I/O Bus main memory I/O bridge bus interface ALU register file CPU chip system busmemory bus disk controller graphics adapter USB controller mousekeyboardmonitor disk I/O bus Expansion slots for other devices such as network adapters.

– 12 – , F’02 Reading a Disk Sector (1) main memory ALU register file CPU chip disk controller graphics adapter USB controller mousekeyboardmonitor disk I/O bus bus interface CPU initiates a disk read by writing a command, logical block number, and destination memory address to a port (address) associated with disk controller.

– 13 – , F’02 Reading a Disk Sector (2) main memory ALU register file CPU chip disk controller graphics adapter USB controller mousekeyboardmonitor disk I/O bus bus interface Disk controller reads the sector and performs a direct memory access (DMA) transfer into main memory.

– 14 – , F’02 Reading a Disk Sector (3) main memory ALU register file CPU chip disk controller graphics adapter USB controller mousekeyboardmonitor disk I/O bus bus interface When the DMA transfer completes, the disk controller notifies the CPU with an interrupt (i.e., asserts a special “interrupt” pin on the CPU)