Introduction to Queuing Theory

Slides:



Advertisements
Similar presentations
Introduction to Queuing Theory
Advertisements

Chapter Queueing Notation
Queueing Models and Ergodicity. 2 Purpose Simulation is often used in the analysis of queueing models. A simple but typical queueing model: Queueing models.
1 Chapter 8 Queueing models. 2 Delay and Queueing Main source of delay Transmission (e.g., n/R) Propagation (e.g., d/c) Retransmission (e.g., in ARQ)
TCOM 501: Networking Theory & Fundamentals
Lecture 13 – Continuous-Time Markov Chains
Queueing Theory: Recap
Queueing Model 박희경.
System Performance & Scalability i206 Fall 2010 John Chuang.
ECS 152A Acknowledgement: slides from S. Kalyanaraman & B.Sikdar
1 Performance Evaluation of Computer Networks Objectives  Introduction to Queuing Theory  Little’s Theorem  Standard Notation of Queuing Systems  Poisson.
Queueing Theory: Part I
Lecture 11 Queueing Models. 2 Queueing System  Queueing System:  A system in which items (or customers) arrive at a station, wait in a line (or queue),
1 Queueing Theory H Plan: –Introduce basics of Queueing Theory –Define notation and terminology used –Discuss properties of queuing models –Show examples.
Queueing Network Model. Single Class Model Open - Infinite stream of arriving customers Closed - Finite population eg Intranet users Indistinguishable.
Little’s Theorem Examples Courtesy of: Dr. Abdul Waheed (previous instructor at COE)
Queueing Theory Professor Stephen Lawrence Leeds School of Business University of Colorado Boulder, CO
CS533 Modeling and Performance Evaluation of Network and Computer Systems Queuing Theory (Chapter 30-31)
Rensselaer Polytechnic Institute © Shivkumar Kalvanaraman & © Biplab Sikdar1 ECSE-4730: Computer Communication Networks (CCN) Network Layer Performance.
CSE 550 Computer Network Design Dr. Mohammed H. Sqalli COE, KFUPM Spring 2012 (Term 112)
Queueing Theory.
7/3/2015© 2007 Raymond P. Jefferis III1 Queuing Systems.
Introduction to Queuing Theory. 2 Queuing theory definitions  (Kleinrock) “We study the phenomena of standing, waiting, and serving, and we call this.

Queueing Theory I. Summary Little’s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K  …
M EAN -V ALUE A NALYSIS Manijeh Keshtgary O VERVIEW Analysis of Open Queueing Networks Mean-Value Analysis 2.
Network Analysis A brief introduction on queues, delays, and tokens Lin Gu, Computer Networking: A Top Down Approach 6 th edition. Jim Kurose.
Introduction to Queuing Theory
Queuing models Basic definitions, assumptions, and identities Operational laws Little’s law Queuing networks and Jackson’s theorem The importance of think.
Probability Review Thinh Nguyen. Probability Theory Review Sample space Bayes’ Rule Independence Expectation Distributions.
CS433 Modeling and Simulation Lecture 13 Queueing Theory Dr. Anis Koubâa 03 May 2009 Al-Imam Mohammad Ibn Saud University.
 Birth Death Processes  M/M/1 Queue  M/M/m Queue  M/M/m/B Queue with Finite Buffers  Results for other Queueing systems 2.
CPE 619 Queueing Networks Aleksandar Milenković The LaCASA Laboratory Electrical and Computer Engineering Department The University of Alabama in Huntsville.
Introduction to Operations Research
Queueing Analysis of Production Systems (Factory Physics)
Lecture 10: Queueing Theory. Queueing Analysis Jobs serviced by the system resources Jobs wait in a queue to use a busy server queueserver.
Manijeh Keshtgary. Queuing Network: model in which jobs departing from one queue arrive at another queue (or possibly the same queue)  Open and Closed.
Introduction to Queueing Theory
Queuing Theory Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues Chapter.
1 Queueing Theory Frank Y. S. Lin Information Management Dept. National Taiwan University
Queueing Theory What is a queue? Examples of queues: Grocery store checkout Fast food (McDonalds – vs- Wendy’s) Hospital Emergency rooms Machines waiting.
1 Queuing Models Dr. Mahmoud Alrefaei 2 Introduction Each one of us has spent a great deal of time waiting in lines. One example in the Cafeteria. Other.
TexPoint fonts used in EMF.
1 Elements of Queuing Theory The queuing model –Core components; –Notation; –Parameters and performance measures –Characteristics; Markov Process –Discrete-time.
Modeling and Analysis of Computer Networks
CS433 Modeling and Simulation Lecture 12 Queueing Theory Dr. Anis Koubâa 03 May 2008 Al-Imam Mohammad Ibn Saud University.
yahoo.com SUT-System Level Performance Models yahoo.com SUT-System Level Performance Models8-1 chapter11 Single Queue Systems.
Queuing Theory and Traffic Analysis Based on Slides by Richard Martin.
Chapter 20 Queuing Theory to accompany Operations Research: Applications and Algorithms 4th edition by Wayne L. Winston Copyright (c) 2004 Brooks/Cole,
CS352 - Introduction to Queuing Theory Rutgers University.
CSCI1600: Embedded and Real Time Software Lecture 19: Queuing Theory Steven Reiss, Fall 2015.
Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski Model of the Nodes in the Packet Network Chapter 10.
Chapter 6 Queueing Models
Queuing Theory.  Queuing Theory deals with systems of the following type:  Typically we are interested in how much queuing occurs or in the delays at.
Queueing Fundamentals for Network Design Application ECE/CSC 777: Telecommunications Network Design Fall, 2013, Rudra Dutta.
Random Variables r Random variables define a real valued function over a sample space. r The value of a random variable is determined by the outcome of.
Queueing Theory. The study of queues – why they form, how they can be evaluated, and how they can be optimized. Building blocks – arrival process and.
Mohammad Khalily Islamic Azad University.  Usually buffer size is finite  Interarrival time and service times are independent  State of the system.
QUEUING THEORY 1.  - means the number of arrivals per second   - service rate of a device  T - mean service time for each arrival   = ( ) Utilization,
Queuing Theory Simulation & Modeling.
CPE 619 Introduction to Queuing Theory
Al-Imam Mohammad Ibn Saud University
Lecture on Markov Chain
Queueing Theory Carey Williamson Department of Computer Science
Queuing models Basic definitions, assumptions, and identities
Queuing models Basic definitions, assumptions, and identities
TexPoint fonts used in EMF.
Queueing Theory 2008.
Carey Williamson Department of Computer Science University of Calgary
Presentation transcript:

Introduction to Queuing Theory Chapter 30 Manijeh Keshtgary

Overview Queueing Notation Rules for All Queues Little's Law Types of Stochastic Processes

Queueing Models: What Will You Learn? What are various types of queues? What is meant by an M/M/m/B/K queue? How to obtain response time, queue lengths, and server utilizations? How to represent a system using a network of several queues? How to analyze simple queueing networks? How to obtain bounds on the system performance using queueing models? How to obtain variance and other statistics on system performance? How to subdivide a large queueing network model and solve it?

Basic Components of a Queue 2. Service time distribution 1. Arrival process 6. Service discipline 5. Customer Population 4. Waiting positions 3. Number of servers Example: students at a typical computer terminal room with a number of terminals. If all terminals are busy, the arriving students wait in a queue.

System Capacity or Number of buffers The system capacity includes those waiting for service as well as those receiving service It is finite

Kendall Notation A/S/m/B/K/SD A: Arrival process S: Service time distribution m: Number of servers B: Number of buffers (system capacity) K: Population size, and SD: Service discipline

Arrival Process Arrival times: Interarrival times: tj form a sequence of Independent and Identically Distributed (IID) random variables The most common arrival process: Poisson arrivals Inter-arrival times are exponential + IID  Poisson arrivals Notation: M = Memoryless = Poisson E = Erlang H = Hyper-exponential G = General  Results valid for all distributions

Service Time Distribution Time each student spends at the terminal Service times are IID Distribution: M, E, H, or G Device = Service center = Queue Buffer = Waiting positions

Service Disciplines First-Come-First-Served (FCFS) Last-Come-First-Served (LCFS) Last-Come-First-Served with Preempt and Resume (LCFS-PR) Round-Robin (RR) with a fixed quantum. Small Quantum  Processor Sharing (PS) Infinite Server: (IS) = fixed delay Shortest Processing Time first (SPT) Shortest Remaining Processing Time first (SRPT) Shortest Expected Processing Time first (SEPT) Shortest Expected Remaining Processing Time first (SERPT). Biggest-In-First-Served (BIFS) Loudest-Voice-First-Served (LVFS)

Common Distributions M: Exponential Ek: Erlang with parameter k Hk: Hyper-exponential with parameter k D: Deterministic  constant G: General  All Memoryless: Expected time to the next arrival is always 1/l regardless of the time since the last arrival Remembering the past history does not help

Erlang

Example: M/M/3/20/1500/FCFS Time between successive arrivals is exponentially distributed Service times are exponentially distributed Three servers 20 Buffers = 3 service + 17 waiting After 20, all arriving jobs are lost Total of 1500 jobs that can be serviced Service discipline is first-come-first-served Defaults: (Only the first 3 parameters are sufficient to indicate the type) Infinite buffer capacity Infinite population size FCFS service discipline G/G/1 = G/G/1/∞/ ∞ /FCFS

Group Arrivals/Service Bulk arrivals/service M[x]: x represents the group size G[x]: a bulk arrival or service process with general inter-group times Examples: M[x]/M/1 : Single server queue with bulk Poisson arrivals and exponential service times M/G[x]/m: Poisson arrival process, bulk service with general service time distribution, and m servers

Key Variables 1 2 m Previous Arrival Arrival Begin Service End Service t w s r n nq ns l Time

Key Variables (cont’d) t = Inter-arrival time = time between two successive arrivals l = Mean arrival rate = 1/E[t] May be a function of the state of the system, e.g., number of jobs already in the system s = Service time per job m = Mean service rate per server = 1/E[s] Total service rate for m servers is mm n = Number of jobs in the system. This is also called queue length Note: Queue length includes jobs currently receiving service as well as those waiting in the queue

Key Variables (cont’d) nq = Number of jobs waiting ns = Number of jobs receiving service r = Response time or the time in the system = time waiting + time receiving service w = Waiting time = Time between arrival and beginning of service

Rules for All Queues Rules: The following apply to G/G/m queues 1. Stability Condition: l < mm Finite-population and the finite-buffer systems are always stable 2. Number in System versus Number in Queue: n = nq+ ns Notice that n, nq, and ns are random variables. E[n]=E[nq]+E[ns] If the service rate is independent of the number in the queue, Cov(nq,ns) = 0

Rules for All Queues (cont’d) 3. Number versus Time: If jobs are not lost due to insufficient buffers, Mean number of jobs in the system = Arrival rate  Mean response time 4. Similarly, Mean number of jobs in the queue = Arrival rate  Mean waiting time This is known as Little's law. 5. Time in System versus Time in Queue r = w + s r, w, and s are random variables E[r] = E[w] + E[s]

Rules for All Queues (cont’d) 6. If the service rate is independent of the number of jobs in the queue, Cov(w,s)=0

Little's Law Black Box Departures Arrivals Mean number in the system = Arrival rate  Mean response time This relationship applies to all systems or parts of systems in which the number of jobs entering the system is equal to those completing service Named after Little (1961) Based on a black-box view of the system: In systems in which some jobs are lost due to finite buffers, the law can be applied to the part of the system consisting of the waiting and serving positions Black Box Arrivals Departures

Proof of Little's Law 1 2 3 4 5 6 7 8 Job number Arrival Departure 4 Number in System 3 2 1 1 2 3 4 5 6 7 8 Time Time If T is large, arrivals = departures = N Arrival rate = Total arrivals/Total time= N/T Hatched areas = total time spent inside the system by all jobs = J Mean time in the system= J/N Mean Number in the system = J/T = (N/T) (J/N) = Arrival rate  Mean time in the system 1 2 3 4 Time in System Job number

Application of Little's Law Arrivals Departures Applying to just the waiting facility of a service center Mean number in the queue = Arrival rate  Mean waiting time Similarly, for those currently receiving the service, we have: Mean number in service = Arrival rate  Mean service time

Example 30.3 A monitor on a disk server showed that the average time to satisfy an I/O request was 100 milliseconds. The I/O rate was about 100 requests per second. What was the mean number of requests at the disk server? Using Little's law: Mean number in the disk server = Arrival rate  Response time = 100 (requests/second) (0.1 seconds) = 10 requests

Stochastic Processes Process: Function of time Stochastic Process: Random variables, which are functions of time Example 1: n(t) = number of jobs at the CPU of a computer system Take several identical systems and observe n(t) The number n(t) is a random variable Can find the probability distribution functions for n(t) at each possible value of t Example 2: w(t) = waiting time in a queue

Types of Stochastic Processes Discrete or Continuous State Processes Markov Processes Birth-death Processes Poisson Processes

Discrete/Continuous State Processes Discrete = Finite or Countable Number of jobs in a system n(t) = 0, 1, 2, .... n(t) is a discrete state process The waiting time w(t) is a continuous state process, you can say waiting time is 2.34 sec. Stochastic Chain: discrete state stochastic process is also called stochastic chain.

Markov Processes In Markov Process, Future states are independent of the past and depend only on the present Named after A. A. Markov who defined and analyzed them in 1907 Markov Chain: discrete state Markov process Markov  It is not necessary to know how long the process has been in the current state  State time has a memoryless (exponential) distribution M/M/m queues can be modeled using Markov processes The time spent by a job in such a queue is a Markov process and the number of jobs in the queue is a Markov chain

Birth-Death Processes 1 2 j-1 j j+1 … l0 l1 l2 lj-1 lj lj+1 m1 m2 m3 mj j+1  j+2 The discrete space Markov processes in which the transitions are restricted to neighboring states Process in state n can change only to state n+1 or n-1. Example: the number of jobs in a queue with a single server and individual arrivals (not bulk arrivals)

Poisson Processes Interarrival time s = IID and exponential  number of arrivals n over a given interval (t, t+x) has a Poisson distribution  arrival = Poisson process or Poisson stream Properties: 1.Merging: 2.Splitting: If the probability of a job going to ith substream is pi, each substream is also Poisson with a mean rate of pi l

Poisson Processes (cont’d) 3.If the arrivals to a single server with exponential service time are Poisson with mean rate l, the departures are also Poisson with the same rate l provided l < m

Poisson Process (cont’d) 4. If the arrivals to a service facility with m service centers are Poisson with a mean rate l, the departures also constitute a Poisson stream with the same rate l, provided l < åi mi. Here, the servers are assumed to have exponentially distributed service times.

Relationship Among Stochastic Processes

Summary Kendall Notation: A/S/m/B/k/SD, M/M/1 Number in system, queue, waiting, service Service rate, arrival rate, response time, waiting time, service time Little’s Law: Mean number in system = Arrival rate X Mean time spent in the system Processes: Markov  Memoryless, Birth-death  Adjacent states Poisson  IID and exponential inter-arrival