Shimizu-lab M-1 Kubota Kazuhisa

Slides:



Advertisements
Similar presentations
三方晶テルル・セレンにおけるDirac分散とスピン軌道効果
Advertisements

M1 colloquium Shimizu-group M1 Daiki Hayashi Possibility of metallic phase and three-dimensional conductance of graphite.
Pressure-Induced Polymerization of Dehydro[24]annulenes Derivative Shimizu-group M1 NAKASE Tomoya 1.
Ab initio calculation of pristine picene and potassium doped picene Kotaro Yamada Kusakabe laboratory Reference: T. Kosugi et al.: J. Phys. Soc. Jpn. 78.
Acknowledgements: Our research is sponsored by DFG SPP planet magnetisms project G1712 7/1. Special thanks are given to Prof. Dr. Wolfgang. Schmahl and.
Pressure-Induced Hydrogen-dominant metallic state in Aluminum Hydride HAGIHARA Toshiya Shimizu-group Igor Goncharenko et al., Phy. Rev. Lett. 100,
Superconductivity in Diamond
Metals: Bonding, Conductivity, and Magnetism (Ch. 6)
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
Yoshida Lab Tatsuo Kano 1.  Introduction Computational Materials Design First-principles calculation DFT(Density Functional Theory) LDA(Local Density.
1 Raman spectra and X-ray diffraction of Boron Triiodide at high pressure SHIMIZU Group ONODA Suzue Ref: A. Anderson and L. Lettress J. Raman Spectrosc.
Pressure-Induced Polymerization of 24NHBn(Dehydro[24]annulenes) Shimizu-group M1 NAKASE Tomoya 1.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Electronic structure of La2-xSrxCuO4 calculated by the
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
The Three Hallmarks of Superconductivity
23 April 2001Doug Martin1 Diamond: A Story of Superlatives.
IV. Electronic Structure and Chemical Bonding J.K. Burdett, Chemical Bonding in Solids Experimental Aspects (a) Electrical Conductivity – (thermal or optical)
Magnetic transition in the Kondo lattice system CeRhSn2
Yoshida Lab M1 Yoshitaka Mino. C ONTENTS Computational Materials Design First-principles calculation Local Density Approximation (LDA) Self-Interaction.
Investigation of fluid- fluid phase transition of hydrogen under high pressure and high temperature 2014/11/26 Shimizu laboratory SHO Kawaguchi.
Theoretical approach to physical properties of atom-inserted C 60 crystals 原子を挿入されたフラーレン結晶の 物性への理論的アプローチ Kusakabe Lab Kawashima Kei.
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) High Pressure Study of Na x TiNCl and CeFe 2.
Nano-scaled domain in the strongly correlated electron materials ( 強相関電子系におけるナノスケール電子相ドメイン ) Tanaka Laboratory Kenichi Kawatani First M1 colloquium.
Who was the first person to observe superconductivity? 1.Leon Cooper 2.Walther Meissner 3.Sir James Dewar 4.Heike Kamerlingh- Onnes.
High Pressure Structural Studies on EuS Nanoparticles up to 52 GPa Kristie Canaday and Ravhi S. Kumar * Department of Physics and Astronomy Austin Peay.
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) Superconductivity in MNX type compounds ( TiNCl ) Superconducting Nitride Halides (MNX),
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Electrical conduction property of solid iodine in the molecular phase Shimizu Group Yu TANAKA.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Yoshida Laboratory Yuya Yamada (山田裕也) 1 Theoretical prediction of structures and properties of simple materials under high pressure ( 高圧下における単純物質の構造と物性の理論的予測.
Calorimetric Investigation under High Pressure Shimizu-Group M1 Shigeki TANAKA F. Bouquet et al., Solid State Communications 113 (2000)
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Michael Browne 11/26/2007.
Pressure effect on the superconductivity of HgBa 2 Ca 2 Cu 3 O 8+  Shimizu Lab. M1 KAMADA Yukihiro.
Search for superconductivity in CrB 2 under pressure 29A13025 Shimizu Lab Kaide Naohiro.
Theoretical prediction of structures and properties of lithium under high pressure ( 高圧下におけるリチウムの構造と 物性の理論的予測 ) Yoshida Laboratory Yuya Yamada (山田裕也)
The Nb 5 Si 3 sample was prepared by Dr. Ravhi Kumar at the University of Nevada, Las Vegas. A stainless steel gasket with a 130 μm centered circular hole.
Shimizu Lab. M1 Takuya Yamauchi
Studies of the Cryogenic Part with Load Lock System T. Eisel, F. Haug CERN TE-CRG-CI October 19 th, 2011, Page 1 Superconductivity years Heike Kamerlingh.
START. What’s “SUPER” about SUPERCONDUCTORS? Clarina R. dela Cruz High Pressure and Low Temperature Laboratory Texas Center for Superconductivity University.
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
High Pressure study of Bromine
Phase diagram of solid oxygen at low temperature and high pressure
Example: Magnetic field control of the conducting and orbital phases of layered ruthenates, J. Karpus et al., Phys. Rev. Lett. 93, (2004)  Used.
1 SHIMIZU Group ONODA Suzue Metallization and molecular dissociation of SnI 4 under pressure Ref: A.L. Chen, P.Y. Yu, M.P. Pasternak, Phys. Rev. B. 44,
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Superconductivity and Superfluidity PHYS3430 Professor Bob Cywinski “Superconductivity is perhaps the most remarkable physical property in the Universe”
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Pressure Dependence of Superconductivity of Iron Chalcogenides
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
SUPERCONDUCTORS mobile electrons in conducting material move through lattice of atoms or ions that vibrate (thermal motion) when conductor is cooled down.
High pressure phase diagram of Beryllium Phys.Rev.B 86,174118(2012) Shimizu Lab. Takuya Yamauchi.
Chapter 7 in the textbook Introduction and Survey Current density:
Superconductivity and Superfluidity The Microscopic Origins of Superconductivity The story so far -what do we know about superconductors?: (i) Superconductors.
WHAT IS SUPERCONDUCTIVITY?? For some materials, the resistivity vanishes at some low temperature: they become superconducting. Superconductivity is the.
NMR measurement using diamond anvil cell 7/6 Shimizu-Lab M1 Masuda Akiyoshi 1.
Electrical resistance
Electrical Properties of Materials
25th International Conference on Low Temperature Physics
Pressure effects on Tc of LaTMPO (TM = Fe, Ni)
Special Topics in Electrodynamics:
Yoshida Lab Tatsuo Kano
2019/4/16 Search for liquid-metallic hydrogen under high temperature and high pressure Shimizu group M1 SHO Kawaguchi V. Dzyabura et al. PNAS, 110, 20,
Ionic liquid gating of VO2 with a hBN interfacial barrier
Special Topics in Electrodynamics:
Pressure generation of toroidal anvil cell for physical property investigation under ultra-high pressure 2019/5/29 Shimizu Lab Kara Yusuke.
Presentation transcript:

Shimizu-lab M-1 Kubota Kazuhisa The review of experimental techniques of generating high pressure: search for superconductivity of beryllium under high pressure Shimizu-lab M-1 Kubota Kazuhisa

Contents ・ Introduction About the pressure In case of H2O ・Experiments How to make the high pressure About DAC Superconductivity of single elements Property of beryllium Experiment ・ Summary

Introduction What is KYOKUGEN ? High Pressure Low Temperature Strong Magnetic Field I am researching physicality in this field.

pressure About the pressure Pressure effect Pressure is one of the important physical quantity. Ex. Ideal gas low : PV=RT Pressure effect Make some change physical properties! pressure ・ Volume ・ Some phase transition Structural phase transition Magnetic phase transition etc…

In case of H2O At room Temperature 1気圧 = 1,013 hPa = 101,300 Pa 1 GPa = 1,000,000,000 Pa ≒ 1万気圧 water Ice(VI) Ice(VII) Ice(Ih) water Ice(V) … -10 ℃ Ihは六方晶系、Icは立方晶系 Phase diagram of H2O Ref. Norikazu Maeda, 水の科学, p165, 北海道大学図書刊行会 (1981) Ice(VI)

How to make the high pressure Example of hydrostatic pressure Cubic anvil 3 × 3 mm2 15 mm Piston cylinder P < 3 GPa P < 15 GPa Ref. 高橋 博樹 「マテリアルサイエンスにおける超高圧技術と高温超伝導研究」

About DAC Diamond Anvil Cell (DAC) Maximum P < 360 GPa Figure of the Earth's interior DAC & Rubik's Cube Ref. http://www.s-yamaga.jp/nanimono/chikyu/chikyunokozo-02.htm

About DAC electrode diamond gasket sample insulating layer V+ V- I- I+ insulated gasket

Pressure Gear Box(加圧台) Handle advantages ・ Making very high pressure. ・ The size of DAC is very small. ・ It can use for optical measuring. disadvantages ・ Making hydrostatic         pressure is difficult. ・ The volume of sample           must be small.

Superconductivity of single elements Superconductivity ; perfect electrical conductivity : R = 0 perfect diamagnetism (Meissner effect) : H = 0 It is found by Kamerlingh Onnes in 1911 with Hg.  At ambient pressure the highest Tc of single elements is Nb (9.25 K) Heike Kamerlingh Onnes Ref. http://ja.wikipedia.org/wiki/%E3%83%98%E3%82%A4%E3%82%B1%E3%83%BB%E3%82%AB%E3%83%A1%E3%83%AB%E3%83%AA%E3%83%B3%E3%82%B0%E3%83%BB%E3%82%AA%E3%83%8D%E3%82%B9

Superconductivity of single elements Ref. Doctor thesis of Matsuoka-san (2008) Ref. S. Okada. et al., J. Phys. Soc. Jpn., 65, 1924 (1996) My sample!

Property of Beryllium Crystal structure hcp Melting point 1551 K toxic It is hard reactive hard to work Ref. D. A. Young, Phase Diagrams of the Elements (University of California, 1991), P. 79.

Tc = 1.14 θD exp [ -1 / N(0) V ] Debye temperature 1440 K Very high!! cf. diamond → 2230 K Ca → 230 K Fe → 470 K Debye temperature 1440 K Very high!! It means phonon interaction Tc = 1.14 θD exp [ -1 / N(0) V ] θD : Debye temperature N(0): Density of electrons near the Fermi surface V : Interaction between electron and lattice vibration In BCS theory… このデバイ温度1440Kはダイヤモンドの次に高く金属元素としては飛びぬけて高い これは電子と格子振動の相互関係がかなり大きいということを示す。 BCS理論によると、超伝導は電子と格子振動の相互作用によるクーパー対の形成により出現する。 そこでTcは以下のようにあらわされ、Beはデバイ温度が高く、電子と格子の相互作用が大きいため高いTcが期待できる。 が、ベリリウムの常圧下でのTcは24.38mKと非常に小さく、これはフェルミ面付近での電子状態密度が非常に小さいためであると考えられる。ここで加圧することによりフェルミ面での電子状態密度が増加するのであれば、Tcの上昇が期待できる。 デバイ温度 : θD = ℏν/kB ・ (6π2N/V)1/3 ν:音速 N:基本単位格子の数=音響フォノンモードの総数 V:試料体積=L^3 Tc of Be is 24.38 mK at ambient pressure Too low

Experiment four-probe resistance measurements Sample setting tape diamond 300 µm Pt SUS310S ruby Be Alumina Sample setting Sample: Be (99.9 %) Cell: 30 mm (Cu-Be) Diamond anvil: 300 mm Insulating layer: Al2O3 Pressure medium: no ruby Be Sorry, but I’ll show you details on next semester’s presentation. 4.0 GPa electrode R vs T at each pressure

Summary Pressure is very interesting method for changing physical properties. DAC is very useful for high pressure experiments. Beryllium at high pressure seems interesting. Next time… More date of experiments.

Phase diagram of H2O Ref. http://www.sci.osaka-cu.ac.jp/phys/crys/ice/lect6.html