1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006.

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
24. June 2004 Andreas Freise Status of VIRGO A. Freise For the Virgo Collaboration European Gravitational Observatory SPIE Glasgow 2004.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Optics of GW detectors Jo van den Brand
1 Virgo commissioning status M.Barsuglia LAL Orsay.
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
rd ILIAS-GW annual general meeting 1 VIRGO Commissioning progress J. Marque (EGO)
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Virgo Control Noise Reduction
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Interferometer Control Matt Evans …talk mostly taken from…
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
1 The Status of Melody: An Interferometer Simulation Program Amber Bullington Stanford University Optics Working Group March 17, 2004 G D.
1 1.ISC scope and activities 2.Initial Virgo status 3.Design requirements 4.Reference solution and design status 5.Plans toward completion 6.Technical.
GEO‘s experience with Signal Recycling Harald Lück Perugia,
1 Noise sources at high frequency in Virgo E. Tournefier (LAPP-CNRS) ILAS WG1 meeting, Hannover December 12 th,2005 Recycled ITF sensitivities Noise sources.
07. July 2004 Andreas Freise Status of VIRGO A. Freise For the Virgo Collaboration European Gravitational Observatory.
Status of VIRGO Francesco Fidecaro (after Lisa Barsotti) - University and INFN Pisa – on behalf of the VIRGO collaboration Aspen - January 19 th, 2005.
LISA October 3, 2005 LISA Laser Interferometer Space Antenna Gravitational Physics Program Technical implications Jo van.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Gravitational Wave Detection Using Precision Interferometry Gregory Harry Massachusetts Institute of Technology - On Behalf of the LIGO Science Collaboration.
1 GEO Simulation Workshop, October 25 th 2007 M Laval The Virgo FFT code: DarkF Mikael Laval CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice,
LSC-VIRGO joint meeting - Pisa1 Input mirrors thermal lensing effect Frequency modulation PRCL length in Virgo Some results from a Finesse simulation.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
1 Advanced Virgo Workshop 14/06/2007 M Laval Fabry Perot cavity for LG and Flat modes Mikael Laval (OCA/ARTEMIS) Outlines: Tools: The optical simulation.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
1st Advanced Virgo Review – November 3-4, 2008 – L. Pinard 1 Mirrors Sub-System Overview  Introduction  Scope of the subsystem, main tasks  Substrates.
Lisa Barsotti - University and INFN Pisa – on behalf of the Virgo Collaboration CASCINA - January 24 th, 2005 ILIAS  Locking of Full Virgo Status of VIRGO.
Status of VIRGO Lisa Barsotti - University and INFN Pisa – on behalf of the VIRGO collaboration ANNECY - December 15 th, 2004  Status of the Commissioning.
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
LIGO-G Z The Status of VIRGO E. Tournefier for the Virgo Collaboration GWADW 2004, Aspen From the CITF to VIRGO Commissioning of the Fabry-Perot.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
The status of VIRGO Edwige Tournefier (LAPP-Annecy ) for the VIRGO Collaboration HEP2005, 21st- 27th July 2005 The VIRGO experiment and detection of.
1 Virgo Commissioning Status WG1 meeting Potsdam, 21 st July 2006.
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
LIGO-G Z March 2007, LSC meeting, Osamu Miyakawa 1 Osamu Miyakawa Hiroaki Yamamoto March 21, 2006 LSC meeting Modeling of AdLIGO arm lock acquisition.
Caltech, February 12th1 Virgo central interferometer: commissioning and engineering runs Matteo Barsuglia Laboratoire de l’Accelerateur Lineaire, Orsay.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Jean-Yves Vinet CNRS-ARTEMIS Observatoire de la Côte d’Azur Effects In cavity mirrors.
ILIAS - Geneve1 Input mirrors thermal lensing effect in Virgo J. Marque.
The VIRGO detection system
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
1 The status of VIRGO E. Tournefier LAPP(Annecy)-IN2P3-CNRS Journées SF2A, Strasbourg 27 juin – 1er juillet 2005 The VIRGO experiment The commissioning.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
Interferometer configurations for Gravitational Wave Detectors
A look at interferometer topologies that use reflection gratings
The Proposed Holographic Noise Experiment
Nergis Mavalvala Aspen January 2005
Laboratoire des Matériaux Avancés - Lyon
Gravitational wave interferometer OPTICS
Homodyne or heterodyne Readout for Advanced LIGO?
Ponderomotive Squeezing Quantum Measurement Group
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Modeling of Advanced LIGO with Melody
Thermal lensing effect: Experimental measurements - Simulation with DarkF & Finesse J. Marque (Measurements analysis: M. Punturo; DarkF simulation: M.
Heavy IMC end payload requirements
Some features of NV. Vincent Loriette.
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006 Fabry-Perot cavity in practice Rules for optical design Optical performances

2 Contents I. Fabry-Perot cavity in practice Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront Length / Frequency measurement: cavity transfer function II. Rules for gravitational wave interferometer optical design Optimum values for mirror transmissions “dark fringe”: contrast defect “Mode Cleaner” III. Optical performances Actual performances: Mirror metrology Optical simulation Accurate in-situ metrology

3 Michelson configuration at dark fringe + servo loop to cancel laser frequency noise VIRGO optical design Slave laser Master laser Fabry-Perot cavity to detect gravitational wave Suspended mirrors to cancel seismic noise L=3 km Long arms to divide mirror and suspension thermal noiseRecycling mirror to reduce shot noise Input > to filter out input beam jitter and select mode L=144m Output Mode Cleaner to filter output mode

4 SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors 1. Fabry-Perot cavity: A. parameters REFLECTIONTRANSMISSION Can we understand these shapes?

5 Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Mirror 1 Mirror 2 E in E sto E trans E ref E rt = r 1 P -1 r 2 P E sto 1. Fabry-Perot cavity: A. parameters

6 SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors E rt = r 1 P -1 r 2 P E sto Round trip “losses” 1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity

7 1. Fabry-Perot cavity: A. parameters SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors E rt = r 1 P -1 r 2 P E sto Free spectral range Period : Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity

8 1. Fabry-Perot cavity: A. parameters SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Recycling gain RESONANCE CONDITION Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity

9 SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors RESONANCE CONDITION Suppose now Cavity pole 1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity

10 SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Finesse 1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity

11 SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors on resonance reflectivity 1. Fabry-Perot cavity: A. parameters Round Trip Losses Free Spectral Range Recycling gain Cavity Pole Finesse Cavity reflectivity

12 2nd order In T+P 1st order in T+P Finesse On resonance reflection transmission 1. Fabry-Perot cavity: A. parameters

13 SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors 1. Fabry-Perot cavity: A. parameters T1 = 12% T2 = 5% L = 0 (finesse = 35) REFLECTIONTRANSMISSION

14 SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer 1. Fabry-Perot cavity: B. Matching Optimal coupling Over-coupling Under-coupling

15 Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer SCALAR MODEL: “plane waves” scalar transmissions, scalar losses of mirrors Frequency/Length tuning 1. Fabry-Perot cavity: B. Matching

16 Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: 1. Fabry-Perot cavity: B. Matching Mirror 1 Mirror 2 E in E sto E trans E ref E in (x,y) ; E sto (x,y) ; r 1, P, r 2 are operators z axis E rt = r 1 P -1 r 2 P E sto

17 Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer NON-SCALAR MODEL: 1. Fabry-Perot cavity: B. Matching E sto (x,y) = k E in (x,y) (k complex number) E sto E in Wavefront matching: Superpose angles and lateral drifts of incoming and resonating beam >

18 NON-SCALAR MODEL: 1. Fabry-Perot cavity: B. Matching E sto (x,y) = k E in (x,y) (k complex number) E sto E in Wavefront matching: Superpose beam positions and beam widths > Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer

19 NON-SCALAR MODEL: Definition of beam coupling: Round trip coupling losses: Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer  Too small mirror diameters “clipping”  imperfect surface: local defects, random figures 1. Fabry-Perot cavity: B. Matching

20 NON-SCALAR MODEL: Definition of stability: Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer Definition of stability in case of perfect surface figures: 1. Fabry-Perot cavity: B. Matching

21 1. Fabry-Perot cavity: B. Matching Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer Charles Fabry ( ) Alfred Perot ( ) Amédée Jobin (mirror manufacturer) ( ) Gustave Yvon (>1911) Marseille – beginning of 20th century “Les franges des lames minces argentées”, Annales de Chimie et de Physique, 7e série, t12, 12 décembre 1897 “A taste of Fabry and Perot’s Discoveries, Physica Scripta, T86, 76-82, 2000

22 Impedance matching Frequency/length tuning (“lock”) Wavefront matching alignment beam size / position surface defects - stability The Fabry-Perot interferometer 1. Fabry-Perot cavity: B. Matching

23 Phase modulated laser: mphase modulation index fmmodulation frequency SB- C SB+ 1. Fabry-Perot cavity: C. measurement

24 error signal: Does not provide information about frequency behavior once locked 1. Fabry-Perot cavity: C. measurement

25 Modulated laser + measurement line: nphase modulation index fnmodulation frequency SB- C SB+ f << FSR, f ≠ fm This pole 1. Fabry-Perot cavity: C. measurement

26 Contents I. Fabry-Perot cavity in practice Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront Length / Frequency measurement: cavity transfer function II. Rules for gravitational wave interferometer optical design Optimum values for mirror transmissions “dark fringe”: contrast defect “Mode Cleaner” III. Optical performances Actual performances: Mirror metrology Optical simulation Accurate in-situ metrology

27 2. Optical design: A. mirror transmissions Fabry-Perot cavity with Rmax transmissions as end mirrors Virgo mirrors: L RT ~500 ppm, G cavity ~ 32  reflectivity defect 1.5% Was estimated 1-5 % at design Have as much as possible power on beamsplitter  Match “losses” of cavities with recycling mirror Was estimated 8 % at design (5.5 % recent refit)

28 Michelson simple : BS laser Pin Pout P max, P min = P out On black and white fringes 2. Optical design: B. dark fringe

29 Slave laser Master laser L=3 km Input > to filter out input beam jitter and select mode L=144m Output Mode Cleaner to filter output mode 2. Optical design: C. Mode Cleaners

30 Detection Output Mode-Cleaner Output Mode Cleaner on Suspended Bench Photodiodes on Detection Bench Beam

31 Contents I. Fabry-Perot cavity in practice Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront Length / Frequency measurement: cavity transfer function II. Rules for gravitational wave interferometer optical design Optimum values for mirror transmissions “dark fringe”: contrast defect “Mode Cleaner” III. Optical performances Actual performances: Mirror metrology Optical simulation Accurate in-situ metrology

32 Measured optical parameters 16.7 W 7.1 W F = 49±0.5 F = 51 ±1 G carrier = (exp. 50) G SB ~ 20 (exp. 36) 1 – C < – C = (mean) Slave laser Master laser 1 W T=10% III. Optical performances Losses in input Mode Cleaner? Recycling gain? Arm finesses?

33 Mirror metrology reproducibility 0.4 nm; step 0.35 mm resolution 30 ppb/cm // 20 ppb resolution of a few ppm transmission map Before and/or after the coating process, maps are measured: - Mirror surface map (modified profilometer) - bulk and coating absorption map (“mirage” bench) - scatter map (commercial instrument) - transmission map (commercial instrument) - local defects measurements - birefringency The VIRGO large mirrors: a challenge for low loss coatings, CQG 2004, 21 Instruments: ESPCI, Paris Coating, 140 m 2 room class 1: LMA, Lyon Scatterometer CASI 400x400mm Micromap 400x400 mm (local defects) Absorption Photothermal Deflection System Phase shift interferometer

34 Diam35 cm Rms 2.3 nm p-p 11.5 nm Surface maps Ex: a large flat mirror -Good quality silica - Good polishing - Control of coating deposition (DIBS) with no pollutants - Surface correction III. Optical performances

35 TWO optical programs: - One that propagates wavefront with FFT - One that decomposes beams on TEM HG(m,n) base - Check out cavity visibility (total losses) - Check out expected recycling gain, for varying radii of curvature - Check out expected contrast defect - Check out modulation frequency - Improve interferometer parameters… Optical simulation III. Optical performances

36 Scalar defectsMapsMaps+thermal Opt mod index ± ±0.001 Opt demod phase02 ±017 ±1 Finesse N ± ±0.2 Finesse W ± ±0.2 dF/F [%] ± ±0.12 Asymmetry [%] ± ±0.5 Stored power N [kW] ± ±0 Lost power N [W] ±13.70 ±1 Surtension N ± ±0.02 Stored power W [kW] ± ±0.3 Lost power W [W] ± ±0.04 Surtension W ± ±0.1 Carrier power on BS [W] ± ±2 Sideband power on BS [W] ± ±0.2 Reflected carrier [W] ± ±0.08 Reflected sb [W] ±00.26 ±0.01 CITF surtension Carrier ± ±0.08 CITF surtension SB ± ±0.1 Transmitted (detected) carrier [mW]0.064 (0.064)359 ±6 (1.6 ±0)324 ±40 (3.5 ±0.1) Transmitted (detected) sb [mW]18.7 (17.9)93.0 ±0.8 (70.0 ±1)125 ±2 (100 ±2) Sensitivity [*1E-23] ± ±0.02 Optical program: typical results (Modal simulation)

37 Example: Virgo simulation with surface maps and with an incoming field of 20W Contrast defect= 0.94% North arm amplification = West arm amplification = Recycling gain = III. Optical performances

38 Details at F FSR Fabry-Perot cavity transfer function measurements Fit values with 95% confidence interval: fp = 479 +/- 3.3 Hz fz = /- 2.2 Hz FSR = /- 2.2 Hz L = /- 30  m Error bars: from measurement errors, Not for constant biases. (fit both real and imaginary parts simultaneously) III. Optical performances

39 Input Mode Cleaner Losses T=2427 ppm T=2457 ppm T = 5.7 ppm Roud-trip losses: Computed from mirror maps: 115 ppm From measurements: 846 +/- 5 ppm Mirror transmission measurements + transfer function details measurements => Mode mismatching 17% => Cavity transmissitivity for TEM00 83% III. Optical performances (september 2005)

40 Contents I. Fabry-Perot cavity in practice Scalar parameters – cavity reflectivity, mirror transmissions, losses Matching: impedance, frequency/length tuning, wavefront Length / Frequency measurement: cavity transfer function II. Rules for gravitational wave interferometer optical design Optimum values for mirror transmissions “dark fringe”: contrast defect “Mode Cleaner” III. Optical performances Actual performances: Mirror metrology Optical simulation Accurate in-situ metrology