The Physical Layer Chapter 2 2.5 - 2.8. Digital Modulation and Multiplexing Baseband Transmission Passband Transmission Frequency Division Multiplexing.

Slides:



Advertisements
Similar presentations
Physical layer: Public Switched Telephone Network (PSTN)
Advertisements

Chapter 2 The Physical Layer.
Long-Distance and Local Loop Digital Connection Technologies
© 2009 Pearson Education, Inc. Publishing as Prentice Hall 6-1 Raymond Panko’s Business Data Networks and Telecommunications, 7th edition May only be used.
The Physical Layer Chapter 2 CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Theoretical Basis for Data Communications.
Broadband local access technology
Physical Layer – Part 2 Data Encoding Techniques
Analog to Digital (digital telephony) Given an analog function (voice?) we wish to represent it as a sequence of digital values Pulse Amplitude Modulation.
The Physical Layer Chapter 2 CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Theoretical Basis for Data Communications.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 8 Introduction to Computer Networks.
20101 The Physical Layer Chapter Bandwidth-Limited Signals.
Physical Layer – Part 2 Data Encoding Techniques
Cn ch21 The Physical Layer Chapter 2. cn ch22 The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 7 Introduction to Networks and the Internet.
CMPE 150 – Winter 2009 Lecture 5 January 20, 2009 P.E. Mantey.
CMPE 150 – Winter 2009 Lecture 4 January 15, 2009 P.E. Mantey.
1 Chapter 2 The Physical Layer The lowest layer of reference model. It defines the mechanical, electrical, and timing interfaces to the network.
Chapter 9 Using Telephone and Cable Networks for Data Transmission Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or.
Module 2.2: ADSL, ISDN, SONET
16 February 2003 TU/e Computer Science, System Architecture and Networking 1 Communication media Thanks to A. Tanenbaum.
Introduction Chapter Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011.
Chapter 12 Long-Distance Digital Connection Technologies Pulse Code Modulation DSU/CSU ISDN ADSL Cable Modem.
Chapter 2.5 – 2.8 Jocelyn Etheredge Nikoya Shaw Crystal Sanders O'Keevia Howard.
Chi-Cheng Lin, Winona State University CS412 Introduction to Computer Networking & Telecommunication DSL, Cable, and Mobile Telephone System.
The physical layer. The Theoretical Basis for Data Communication Fourier Analysis Any periodical signal can be decomposed as a sum of sinusoidal signals.
Computer networks 6: Wireless and Mobile Networks.
Computer Networks NYUS FCSIT Spring 2008 Igor TRAJKOVSKI, Ph.D. Associate Professor
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
Modeling and Analysis of Computer Networks (The physical Layer) Ali Movaghar Fall 2006.
The Physical Layer Chapter 2 Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011.
Telecommunications systems (Part 2) School of Business Eastern Illinois University © Abdou Illia, Spring 2007 (Week 12, Thursday 3/29/2007) T-1 Digital.
© 2009 Pearson Education, Inc. Publishing as Prentice Hall 6-1 Raymond Panko’s Business Data Networks and Telecommunications, 7th edition May only be used.
جلسه ششم شبکه های کامپیوتری به نــــــــــــام خدا.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Modulation, Multiplexing, & Public Switched Telephone.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication CDMA.
The Physical Layer Part1. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
Modeling and Analysis of Computer Networks (The physical Layer) Ali Movaghar Winter 2009.
09/20/2007EETS Chapter 2/2 (Physical Layer) Public Switched Telephone System (2) The Mobile Telephone System Cable Television.
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
1 William Stallings Data and Computer Communications 7 th Edition Chapter 8 Multiplexing.
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
The Physical Layer Chapter 2 – Part 1 Ch The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate.
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Nguyễn Đức Thái.
The Physical Layer Chapter 2 – Part 2 Ch The Local Loop: Modems, ADSL, and Wireless The use of both analog and digital transmissions for a computer.
The Physical Layer Highlights of this chapter Highlights of this chapter Theoretical Basis for Data Communication Theoretical Basis for Data Communication.
Chapter 2 The Physical Layer 4/26/2017
Chapter 2 The Physical Layer.
Some of the Existing Systems. Wired Communication – Telephone Company Dial-up – 56kbps DSL – Digital Subscriber Line – ADSL: Asymmetric DSL, different.
Chapter 9. High-Speed Digital Access: DSL, Cable Modems, and SONET
نظام المحاضرات الالكترونينظام المحاضرات الالكتروني.
Transmision Media. Transmission media types a)Guided b)Unguided.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 2 Omar Meqdadi Department of Computer Science and Software Engineering.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication DSL and Cable.
1 Kyung Hee University Chapter 9 Using Telephone and Cable Networks for Data Transmission.
Computer Networks Farzad Rojan Chapter 2: Physical Layer.
Chapter 9 Using Telephone and Cable Networks for Data Transmission.
Chapter 9 Using Telephone and Cable Networks for Data Transmission.
The Physical Layer Chapter 2. Physical layer deals with data communication.it decides way the other layers work. Example, when network connect, may have.
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
The Physical Layer Dr. ir. S.S. Msanjila RIS 251.
The Physical Layer Chapter 2 Institute of Information Science and Technology. Chengdu University YiYong 2008 年 2 月 25 日.
Digital Modulation, Telephone, Cable Television
Physical Layer (Part 2) Data Encoding Techniques
Physical Layer – Part 2 Data Encoding Techniques
Communication Satellites
فصل سوم: لایه فیزیکی (Physical Layer)
Physical Layer – Part 2 Data Encoding Techniques
The Physical Layer Chapter 2
The Physical Layer Chapters
Presentation transcript:

The Physical Layer Chapter

Digital Modulation and Multiplexing Baseband Transmission Passband Transmission Frequency Division Multiplexing Time Division Multiplexing Code Division Multiplexing Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Baseband Transmission Line codes: (a) Bits, (b) NRZ, (c) NRZI, (d) Manchester, (e) Bipolar or AMI. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Clock Recovery 4B/5B mapping. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Passband Transmission (1) (a) A binary signal. (b) Amplitude shift keying. (c) Frequency shift keying. (d) Phase shift keying. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Passband Transmission (2) (a) QPSK. (b) QAM-16. (c) QAM-64. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Frequency Division Multiplexing (1) Gray-coded QAM-16. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Frequency Division Multiplexing (2) Frequency division multiplexing. (a) The original bandwidths. (b) The bandwidths raised in frequency. (c) The multiplexed channel. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Frequency Division Multiplexing (3) Orthogonal frequency division multiplexing (OFDM). Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Time Division Multiplexing Time Division Multiplexing (TDM). Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Code Division Multiplexing (1) (a) Chip sequences for four stations. (b) Signals the sequences represent Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Code Division Multiplexing (2) (a) Six examples of transmissions. (b) Recovery of station C’s Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

The Public Switched Telephone Network Structure of the telephone system Politics of telephones Local loop: modems, ADSL, and fiber Trunks and multiplexing Switching Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Structure of the Telephone System (1) (a) Fully interconnected network. (b) Centralized switch. (c) Two-level hierarchy. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Structure of the Telephone System (2) A typical circuit route for a long-distance call. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Structure of the Telephone System (3) Major Components 1. Local loops analog twisted pairs to houses, businesses). 2. Trunks (digital fiber optic links between switching offices). 3. Switching offices (calls are moved from one trunk to another). Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

The Politics of Telephones The relationship of LATAs, LECs, and IXCs. Circles are LEC switching offices. Hexagons belong to IXC whose number is in it. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Telephone Modems Use of both analog and digital transmission for computer -to- computer call. Conversion done by modems and codecs. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Digital Subscriber Lines (1) Bandwidth versus distance over Category 3 UTP for DSL. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Digital Subscriber Lines (2) Operation of ADSL using discrete multitone modulation. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Digital Subscriber Lines (3) A typical ADSL equipment configuration. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Fiber To The Home Passive optical network for Fiber To The Home. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Time Division Multiplexing (1) The T1 carrier (1.544 Mbps). Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Time Division Multiplexing (2) Multiplexing T1 streams into higher carriers Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

SONET/SDH (1) Two back-to-back SONET frames. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

SONET/SDH (2) SONET and SDH multiplex rates. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Wavelength Division Multiplexing Wavelength division multiplexing Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Circuit Switching/Packet Switching (1) (a) Circuit switching. (b) Packet switching. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Circuit Switching/Packet Switching (2) Timing of events in (a) circuit switching, (b) packet switching Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Circuit Switching/Packet Switching (3) A comparison of circuit-switched and packet-switched networks. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Mobile Telephone System First-Generation (1G) Mobile Phones Analog Voice Second-Generation (2G) Mobile Phones Digital Voice Third-Generation (3G) Mobile Phones Digital Voice + Data Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Advanced Mobile Phone System (a) Frequencies are not reused in adjacent cells. (b) To add more users, smaller cells can be used. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

GSM—The Global System for Mobile Communications (1) GSM mobile network architecture. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

GSM—The Global System for Mobile Communications (2) GSM uses 124 frequency channels, each of which uses an eight-slot TDM system. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

GSM—The Global System for Mobile Communications (3) A portion of the GSM framing structure. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Digital Voice and Data (1) Basic services intend by IMT-2000 network High-quality voice transmission. Messaging (replacing , fax, SMS, chat). Multimedia (music, videos, films, television). Internet access (Web surfing, incl. audio, video). Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Digital Voice and Data (2) Soft handoff (a) before, (b) during, and (c) after. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Cable Television Community antenna television Internet over cable Spectrum allocation Cable modems ADSL versus cable Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Community Antenna Television An early cable television system Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Internet over Cable (1) Cable television Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Internet over Cable (2) The fixed telephone system. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Spectrum Allocation Frequency allocation in a typical cable TV system used for Internet access. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

Cable Modems Typical details of the upstream and downstream channels in North America. Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011

End Chapter 2 Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011