Face Detection using the Viola-Jones Method

Slides:



Advertisements
Similar presentations
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
Advertisements

Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Rapid Object Detection using a Boosted Cascade of Simple Features Paul Viola, Michael Jones Conference on Computer Vision and Pattern Recognition 2001.
Face detection Behold a state-of-the-art face detector! (Courtesy Boris Babenko)Boris Babenko.
Face Detection & Synthesis using 3D Models & OpenCV Learning Bit by Bit Don Miller ITP, Spring 2010.
F ACE TRACKING EE 7700 Name: Jing Chen Shaoming Chen.
AdaBoost & Its Applications
Face detection Many slides adapted from P. Viola.
Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei Li,
EE462 MLCV Lecture 5-6 Object Detection – Boosting Tae-Kyun Kim.
Viola/Jones: features “Rectangle filters” Differences between sums of pixels in adjacent rectangles { y t (x) = +1 if h t (x) >  t -1 otherwise Unique.
The Viola/Jones Face Detector Prepared with figures taken from “Robust real-time object detection” CRL 2001/01, February 2001.
The Viola/Jones Face Detector (2001)
HCI Final Project Robust Real Time Face Detection Paul Viola, Michael Jones, Robust Real-Time Face Detetion, International Journal of Computer Vision,
Rapid Object Detection using a Boosted Cascade of Simple Features
Robust Real-time Object Detection by Paul Viola and Michael Jones ICCV 2001 Workshop on Statistical and Computation Theories of Vision Presentation by.
Face detection and recognition Many slides adapted from K. Grauman and D. Lowe.
A Robust Real Time Face Detection. Outline  AdaBoost – Learning Algorithm  Face Detection in real life  Using AdaBoost for Face Detection  Improvements.
A Robust Real Time Face Detection. Outline  AdaBoost – Learning Algorithm  Face Detection in real life  Using AdaBoost for Face Detection  Improvements.
Robust Real-Time Object Detection Paul Viola & Michael Jones.
Viola and Jones Object Detector Ruxandra Paun EE/CS/CNS Presentation
Foundations of Computer Vision Rapid object / face detection using a Boosted Cascade of Simple features Presented by Christos Stoilas Rapid object / face.
Face Detection CSE 576. Face detection State-of-the-art face detection demo (Courtesy Boris Babenko)Boris Babenko.
FACE DETECTION AND RECOGNITION By: Paranjith Singh Lohiya Ravi Babu Lavu.
Using Statistic-based Boosting Cascade Weilong Yang, Wei Song, Zhigang Qiao, Michael Fang 1.
Detecting Pedestrians Using Patterns of Motion and Appearance Paul Viola Microsoft Research Irfan Ullah Dept. of Info. and Comm. Engr. Myongji University.
Machine Learning – Linear Classifiers and Boosting CS 271: Fall 2007 Instructor: Padhraic Smyth.
Window-based models for generic object detection Mei-Chen Yeh 04/24/2012.
Lecture 29: Face Detection Revisited CS4670 / 5670: Computer Vision Noah Snavely.
Face detection Slides adapted Grauman & Liebe’s tutorial
Visual Object Recognition
Automatic Image Anonymizer Alex Brettingen James Esposito.
DIEGO AGUIRRE COMPUTER VISION INTRODUCTION 1. QUESTION What is Computer Vision? 2.
Robust Real-time Face Detection by Paul Viola and Michael Jones, 2002 Presentation by Kostantina Palla & Alfredo Kalaitzis School of Informatics University.
ECE738 Advanced Image Processing Face Detection IEEE Trans. PAMI, July 1997.
Tony Jebara, Columbia University Advanced Machine Learning & Perception Instructor: Tony Jebara.
Face Detection Ying Wu Electrical and Computer Engineering Northwestern University, Evanston, IL
Lecture notes for Stat 231: Pattern Recognition and Machine Learning 1. Stat 231. A.L. Yuille. Fall 2004 AdaBoost.. Binary Classification. Read 9.5 Duda,
Robust Real Time Face Detection
Adaboost and Object Detection Xu and Arun. Principle of Adaboost Three cobblers with their wits combined equal Zhuge Liang the master mind. Failure is.
HCI/ComS 575X: Computational Perception Instructor: Alexander Stoytchev
Lecture 09 03/01/2012 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
The Viola/Jones Face Detector A “paradigmatic” method for real-time object detection Training is slow, but detection is very fast Key ideas Integral images.
Bibek Jang Karki. Outline Integral Image Representation of image in summation format AdaBoost Ranking of features Combining best features to form strong.
Learning to Detect Faces A Large-Scale Application of Machine Learning (This material is not in the text: for further information see the paper by P.
FACE DETECTION : AMIT BHAMARE. WHAT IS FACE DETECTION ? Face detection is computer based technology which detect the face in digital image. Trivial task.
CS-498 Computer Vision Week 9, Class 2 and Week 10, Class 1
Notes on HW 1 grading I gave full credit as long as you gave a description, confusion matrix, and working code Many people’s descriptions were quite short.
A Brief Introduction on Face Detection Mei-Chen Yeh 04/06/2010 P. Viola and M. J. Jones, Robust Real-Time Face Detection, IJCV 2004.
Project Overview CSE 6367 – Computer Vision Vassilis Athitsos University of Texas at Arlington.
Machine Learning – Classifiers and Boosting Reading Ch , (3 rd ed.) Ch , but not the part of 20.3 after “Learning Bayesian.
Face detection Many slides adapted from P. Viola.
Hand Detection with a Cascade of Boosted Classifiers Using Haar-like Features Qing Chen Discover Lab, SITE, University of Ottawa May 2, 2006.
Face Detection and Recognition Reading: Chapter and, optionally, “Face Recognition using Eigenfaces” by M. Turk and A. Pentland.
AdaBoost Algorithm and its Application on Object Detection Fayin Li.
1 Munther Abualkibash University of Bridgeport, CT.
Reading: R. Schapire, A brief introduction to boosting
2. Skin - color filtering.
Cascade for Fast Detection
License Plate Detection
Machine Learning – Linear Classifiers and Boosting
Session 7: Face Detection (cont.)
Lit part of blue dress and shadowed part of white dress are the same color
High-Level Vision Face Detection.
Learning to Detect Faces Rapidly and Robustly
Cos 429: Face Detection (Part 2) Viola-Jones and AdaBoost Guest Instructor: Andras Ferencz (Your Regular Instructor: Fei-Fei Li) Thanks to Fei-Fei.
ADABOOST(Adaptative Boosting)
Machine Learning – Classifiers and Boosting
Lecture 29: Face Detection Revisited
Jie Chen, Shiguang Shan, Shengye Yan, Xilin Chen, Wen Gao
Presentation transcript:

Face Detection using the Viola-Jones Method CS 175, Fall 2007 Padhraic Smyth Department of Computer Science University of California, Irvine

Outline Viola Jones face detection algorithm State-of-the-art face detector MATLAB code available for CS 175 for implementing this algorithm See viola_jones.zip, under projectcode on the class Web page

Viola-Jones Face Detection Algorithm Overview : Viola Jones technique overview Features Integral Images Feature Extraction Weak Classifiers Boosting and classifier evaluation Cascade of boosted classifiers Example Results Full details available in paper by Viola and Jones, International Journal of Computer Vision, 2004 Some of the following slides were adapted from a presentation by Nathan Faggian

Viola Jones Technique Overview Three major contributions/phases of the algorithm : Feature extraction Classification using boosting Multi-scale detection algorithm Feature extraction and feature evaluation. Rectangular features are used, with a new image representation their calculation is very fast. Classifier training and feature selection using a slight variation of a method called AdaBoost. A combination of simple classifiers is very effective

Features Four basic types. They are easy to calculate. The white areas are subtracted from the black ones. A special representation of the sample called the integral image makes feature extraction faster.

Integral images Summed area tables A representation that means any rectangle’s values can be calculated in four accesses of the integral image.

Fast Computation of Pixel Sums

Feature Extraction Features are extracted from sub windows of a sample image. The base size for a sub window is 24 by 24 pixels. Each of the four feature types are scaled and shifted across all possible combinations In a 24 pixel by 24 pixel sub window there are ~160,000 possible features to be calculated.

Learning with many features We have 160,000 features – how can we learn a classifier with only a few hundred training examples without overfitting? Idea: Learn a single simple classifier Classify the data Look at where it makes errors Reweight the data so that the inputs where we made errors get higher weight in the learning process Now learn a 2nd simple classifier on the weighted data Combine the 1st and 2nd classifier and weight the data according to where they make errors Learn a 3rd classifier on the weighted data … and so on until we learn T simple classifiers Final classifier is the combination of all T classifiers This procedure is called “Boosting” – works very well in practice.

Boosting Example

First classifier

First 2 classifiers

First 3 classifiers

Final Classifier learned by Boosting

Recall: Perceptron Operation Equations of “thresholded” operation: = 1 (if w1x1 +… wd xd + wd+1 > 0) o(x1, x2,…, xd-1, xd) = -1 (otherwise)

Perceptron with just a Single Feature Equations of “thresholded” operation: Equivalent to x1 > - wd+1 / w1 i.e., equivalent to comparing the feature to a threshold Learning = finding the best threshold for a single feature Can be trained by gradient descent (or direct search) = 1 (if w1x1 + wd+1 > 0) o(x1) = -1 (otherwise)

Final Classifier learned by Boosting

Boosting with Single Feature Perceptrons Viola-Jones version of Boosting: “simple” (weak) classifier = single-feature perceptron see last slide With K features (e.g., K = 160,000) we have 160,000 different single-feature perceptrons At each stage of boosting given reweighted data from previous stage Train all K (160,000) single-feature perceptrons Select the single best classifier at this stage Combine it with the other previously selected classifiers Reweight the data Learn all K classifiers again, select the best, combine, reweight Repeat until you have T classifiers selected Hugely computationally intensive Learning K perceptrons T times E.g., K = 160,000 and T = 1000

How is classifier combining done? At each stage we select the best classifier on the current iteration and combine it with the set of classifiers learned so far How are the classifiers combined? Take the weight*feature for each classifier, sum these up, and compare to a threshold (very simple) Boosting algorithm automatically provides the appropriate weight for each classifier and the threshold This version of boosting is known as the AdaBoost algorithm Some nice mathematical theory shows that it is in fact a very powerful machine learning technique

Reduction in Error as Boosting adds Classifiers

Useful Features Learned by Boosting

A Cascade of Classifiers

Cascade of Boosted Classifiers Referred here as a degenerate decision tree. Very fast evaluation. Quick rejection of sub windows when testing. Reduction of false positives. Each node is trained with the false positives of the prior. AdaBoost can be used in conjunction with a simple bootstrapping process to drive detection error down. Viola and Jones present a method to do this, that iteratively builds boosted nodes, to a desired false positive rate.

Detection in Real Images Basic classifier operates on 24 x 24 subwindows Scaling: Scale the detector (rather than the images) Features can easily be evaluated at any scale Scale by factors of 1.25 Location: Move detector around the image (e.g., 1 pixel increments) Final Detections A real face may result in multiple nearby detections Postprocess detected subwindows to combine overlapping detections into a single detection

Training In paper, 24x24 images of faces and non faces (positive and negative examples).

Sample results using the Viola-Jones Detector Notice detection at multiple scales

More Detection Examples

Practical implementation Details discussed in Viola-Jones paper Training time = weeks (with 5k faces and 9.5k non-faces) Final detector has 38 layers in the cascade, 6060 features 700 Mhz processor: Can process a 384 x 288 image in 0.067 seconds (in 2003 when paper was written)

Code and Data for CS 175 In directory viola_jones.zip (under MATLAB code for Projects) Code has been written by Nathan (TA) Current “release” is not complete – he will be updating it Please email Nathan for questions/help/discussion in using this code (nsutter@ics.uci.edu) Major components: Feature extraction (written) Boosting algorithm (written) Cascade (not written – may not be necessary) Multi-scale multi-location detection (not written)

Code and Data for CS 175 Look at MATLAB directory on the Web page to see what functions and data are available

Small set of 111 Training Images

Summary Viola-Jones face detection Features Integral Images Feature Extraction Weak Classifiers Boosting and classifier evaluation Cascade of boosted classifiers Example Results MATLAB code available on the class Web site Will likely require some emails with Nathan to figure out how to use it Work on your projects! Progress report due a week from Monday.