1 C01 – 2009.01.20 Advanced Robotics for Autonomous Manipulation Department of Mechanical EngineeringME 696 – Advanced Topics in Mechanical Engineering.

Slides:



Advertisements
Similar presentations
Computer Graphics Lecture 4 Geometry & Transformations.
Advertisements

Outline: Introduction Link Description Link-Connection Description
1 C02,C03 – ,27,29 Advanced Robotics for Autonomous Manipulation Department of Mechanical EngineeringME 696 – Advanced Topics in Mechanical Engineering.
Introduction to ROBOTICS
P. Axelrad, D. Lawrence ASEN3200 Spring 2006 ATTITUDE REPRESENTATION l Attitude cannot be represented by vector in 3-dimensional space, like position or.
Denavit-Hartenberg Convention
Kinematic Modelling in Robotics
Kinematics Pose (position and orientation) of a Rigid Body
3D Kinematics Eric Whitman 1/24/2010. Rigid Body State: 2D p.
The Concepts of Orientation/Rotation ‘Transformations’ ME Lecture Series 2 Fall 2011, Dr. R. Lindeke 1.
The City College of New York 1 Dr. Jizhong Xiao Department of Electrical Engineering City College of New York Kinematics of Robot Manipulator.
CS5500 Computer Graphics March 22, Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002 Coordinate-Free Geometry When we learned simple.
Time to Derive Kinematics Model of the Robotic Arm
Ch. 2: Rigid Body Motions and Homogeneous Transforms
3-D Geometry.
Ch. 3: Forward and Inverse Kinematics
Introduction to Robotics Lecture II Alfred Bruckstein Yaniv Altshuler.
Introduction to ROBOTICS
Serial and Parallel Manipulators
Transformations. 2 Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002 Coordinate-Free Geometry When we learned simple geometry, most of us.
Introduction to ROBOTICS
Introduction to ROBOTICS
Euler Angles. Three Angles  A rotation matrix can be described with three free parameters. Select three separate rotations about body axesSelect three.
The linear algebra of Canadarm
An Introduction to Robot Kinematics
More details and examples on robot arms and kinematics
Velocities and Static Force
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München.
ME/ECE Professor N. J. Ferrier Forward Kinematics Professor Nicola Ferrier ME Room 2246,
Definition of an Industrial Robot
1 Kinematics ( 運動學 ) Primer Jyun-Ming Chen Fall 2009.
February 21, 2000Robotics 1 Copyright Martin P. Aalund, Ph.D. Computational Considerations.
CS 480/680 Computer Graphics Representation Dr. Frederick C Harris, Jr. Fall 2012.
CS 480/680 Computer Graphics Transformations Dr. Frederick C Harris, Jr.
Kinematics of Robot Manipulator
Chapter 2 Robot Kinematics: Position Analysis
Rotations and Translations
Transformations Jehee Lee Seoul National University.
Kinematics of Robot Manipulator
1 C03 – Advanced Robotics for Autonomous Manipulation Department of Mechanical EngineeringME 696 – Advanced Topics in Mechanical Engineering.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Tu, Sept. 07 © Dan Negrut, 2009 ME451, UW-Madison TexPoint fonts.
1 Fundamentals of Robotics Linking perception to action 2. Motion of Rigid Bodies 南台科技大學電機工程系謝銘原.
Jinxiang Chai CSCE441: Computer Graphics 3D Transformations 0.
Jinxiang Chai Composite Transformations and Forward Kinematics 0.
Chapter 2 Rigid Motions and Coordinate Transformations
Robot Kinematics: Position Analysis 2.1 INTRODUCTION  Forward Kinematics: to determine where the robot ’ s hand is? (If all joint variables are known)
Kinematics. The function of a robot is to manipulate objects in its workspace. To manipulate objects means to cause them to move in a desired way (as.
Chapter 2: Description of position and orientation Faculty of Engineering - Mechanical Engineering Department ROBOTICS Outline: Introduction. Descriptions:
Comparing Two Motions Jehee Lee Seoul National University.
Composite 3D Transformations. Example of Composite 3D Transformations Try to transform the line segments P 1 P 2 and P 1 P 3 from their start position.
Affine Geometry.
Composite 3D Transformations. Example of Composite 3D Transformations Try to transform the line segments P 1 P 2 and P 1 P 3 from their start position.
Computer Graphics I, Fall 2010 Transformations.
COMP322/S2000/L111 Inverse Kinematics Given the tool configuration (orientation R w and position p w ) in the world coordinate within the work envelope,
Learning from the Past, Looking to the Future James R. (Jim) Beaty, PhD - NASA Langley Research Center Vehicle Analysis Branch, Systems Analysis & Concepts.
MASKS © 2004 Invitation to 3D vision Lecture 6 Introduction to Algebra & Rigid-Body Motion Allen Y. Yang September 18 th, 2006.
Robotics Chapter 3 – Forward Kinematics
Velocity Propagation Between Robot Links 3/4 Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA.
Kinematics 제어시스템 이론 및 실습 조현우
Denavit-Hartenberg Convention
Spatcial Description & Transformation
Ch. 2: Rigid Body Motions and Homogeneous Transforms
Denavit-Hartenberg Convention
Direct Manipulator Kinematics
Mobile Robot Kinematics
CHAPTER 2 FORWARD KINEMATIC 1.
Manipulator Dynamics 2 Instructor: Jacob Rosen
Chapter 2 Mathematical Analysis for Kinematics
Robotics 1 Copyright Martin P. Aalund, Ph.D.
Presentation transcript:

1 C01 – Advanced Robotics for Autonomous Manipulation Department of Mechanical EngineeringME 696 – Advanced Topics in Mechanical Engineering

C01: Geometry of robotics structures 2 Summary 1.Vectors (definitions and operations) 2.Coordinate systems 3.Rotation matrices 4.Representation of rotation matrices 5.Transformation matrices 6.Geometry of robotics structures C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example  ME696 - Advanced Robotics

Vectors: definitions 3 Point Point in a Cartesian system: Spherical reference system: Line segment: a part of a line that is bounded by two distinct end points. Oriented line segment: Given two oriented line segments [P-Q] and [P`-Q`], they are equipollent if they have the same direction, length and orientation. Given an oriented segment [P-Q], a correspondent free vector is the whole class of line segments equipollent to [P-Q]. Note the difference with the bound vector. ME696 - Advanced Robotics – C01 i j k p1p1 p3p3 P Q P` Q` C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Vectors: operations 4 Dot (scalar) product Properties: Cross (vector) product Properties: ME696 - Advanced Robotics – C01 v1v1 v2v2   v1v1 v1v1 v 1  v 2 C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Coordinate systems 5 In geometry and kinematics, coordinate systems are used not only to describe the (linear) position of points, but also to describe the angular position of axes, planes, and rigid bodies. In the latter case, the orientation of a second (typically referred to as "local") coordinate system, fixed to the node, is defined based on the first (typically referred to as "global" or "world" coordinate system). ME696 - Advanced Robotics – C01 OaOa k i j i i j j k k ObOb C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Coordinate systems 6  { O a, i a, j a, k a }  { O b, i b, j b, k b } Any vector can be uniquely expressed w.r.t either and : v = c 1 i a + c 2 j a + c 3 k a v = h 1 i b + h 2 j b + h 3 k b ME696 - Advanced Robotics – C01 OaOa k i j i i j j k k ObOb C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Coordinate systems 7 Orthogonal systems The reference frame  { O a, i a, j a, k a } is orthogonal with right- handed orientation if: orthogonal with left-handed orientation: If i, j, k are also of unit length the frame are orthonormal. ME696 - Advanced Robotics – C01 OaOa i j k C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Algebraic vector 8 Given 2 free vectors v and w in an orthonormal-right-handed reference system we have: Dot product: Cross product: where: ME696 - Advanced Robotics – C01 OaOa i i j j k k ObOb P Q C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Rotation matrices 9 Position of reference systems Given two orthonormal reference systems and, the Rotation Matrix of with respect to is defined by: Properties: ME696 - Advanced Robotics – C01 OaOa i i j j k k ObOb C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Rotation matrices 10 Change of reference system Problem statement: Given a free vector v with known projection w.r.t. the frame, we want to compute the projection w.r.t. the frame : Hence: similarly: ME696 - Advanced Robotics – C01 OaOa i i j j k k ObOb C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Rotation matrices 11 Change of reference system for the cross-product operator ME696 - Advanced Robotics – C01 C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Rotation matrices 12 Concatenation of rotation matrices Problem statement: Given n reference systems, we want to compute the rotation matrix between 2 frames and such as: Algorithm: 1)Identify an oriented path from to 2)Pre-multiply the vector k v with all the rotation matrices encountered (if the arrow is not opposite the rotation matrix is transposed) ME696 - Advanced Robotics – C01 C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Representation of rotation matrices 13 Exponential representation Problem statement: The frame, initially coincident with, is rotated of an angle theta around the axis specified by v. Expanding the exponential we have: ME696 - Advanced Robotics – C01 kaka iaia jaja ibib jbjb kbkb  v C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Representation of rotation matrices 14 Exponential representation Special cases: ME696 - Advanced Robotics – C01 kaka iaia jaja ibib jbjb kbkb  v C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Rotation matrices 15 Roll-Pitch –Yaw (Euler) ME696 - Advanced Robotics – C01 j0j0 i0i0 z 0k  (yaw)  (pitch)  (roll) k1  k0k1  k0 j1j1 i1i1 i2i2 j2  j1j2  j1 k2k2 j3j3 k3k3 i3  i2i3  i2    C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Rotation matrices 16 Roll-Pitch –Yaw (Euler) ME696 - Advanced Robotics – C01 C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Transformation matrices 17 Change of reference system for points in space Problem statement: Given a generic point P in the space, compute its coordinates w.r.t. the frames and We have: ME696 - Advanced Robotics – C01 k i j i i j j k k PP C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Transformation matrices 18 Change of reference system for points in space Point P in : Representation of P in homogeneous coordinates: Transformation matrix: ME696 - Advanced Robotics – C01 k i j i i j j k k PP C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Geometry of robotics structures 19 Multibody systems ME696 - Advanced Robotics – C01 Link Giunto C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Geometry of robotics structures 20 Denavit-Hartenberg ME696 - Advanced Robotics – C01 C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Geometry of robotics structures 21 Multibody systems ME696 - Advanced Robotics – C01 C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

Simulation Environment Robotics Developer Studio 22 RDS: Simple application example 5 Degrees of freedom linear chain. Link 1 Link 2 Link 3 Joint 1 Joint 2 Joint 3 Link 5 Joint 5 C ontents 1. Vectors 1. Vectors  2. Coordinate sys. 2. Coordinate sys.  Rotation Matrices Matrices 4. Representation 4. Representation  5. Transformation5. Transformation M.  6. Geometry 6. Geometry  7. Example 7. Example 

End of presentation