Forecast impact experiments with CHAMP RO measurements Sean Healy Acknowledgements Jean-Noël Thépaut, Sami Saarinen, Niels Bormann, Lars Isaksen, Adrian.

Slides:



Advertisements
Similar presentations
ASSIMILATION of Limb measurements at ECMWF: GPS radio occultation
Advertisements

© The Aerospace Corporation 2014 Observation Impact on WRF Model Forecast Accuracy over Southwest Asia Michael D. McAtee Environmental Satellite Systems.
Page 1© Crown copyright 2005 The Radio Occultation Processing Package GRAS-SAF Team (Axel von Engeln), August 2005 GPSRO2, Lansdowne, Virginia.
1 Met Office, UK 2 Japan Meteorological Agency 3 Bureau of Meteorology, Australia Assimilation of data from AIRS for improved numerical weather prediction.
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
1 ATOVS and SSM/I assimilation at the Met Office Stephen English, Dave Jones, Andrew Smith, Fiona Hilton and Keith Whyte.
Bill Campbell and Liz Satterfield Naval Research Laboratory, Monterey CA Presented at the AMS Annual Meeting 4-8 January 2015 Phoenix, AZ Accounting for.
Current Status of the Development of the Local Ensemble Transform Kalman Filter at UMD Istvan Szunyogh representing the UMD “Chaos-Weather” Group Ensemble.
Numerical Weather Prediction Division The usage of the ATOVS data in the Korea Meteorological Administration (KMA) Sang-Won Joo Korea Meteorological Administration.
ECMWF – 1© European Centre for Medium-Range Weather Forecasts Developments in the use of AMSU-A, ATMS and HIRS data at ECMWF Heather Lawrence, first-year.
GPS / RO for atmospheric studies Dept. of Physics and Astronomy GPS / RO for atmospheric studies Panagiotis Vergados Dept. of Physics and Astronomy.
GPS radio occultation Sean Healy DA lecture, 28th April, 2008.
GRAS SAF Workshop, 12 June 2003 Assimilation of satellite data at ECMWF Prospects for use of radio-occultation measurements Jean-Noël Thépaut ECMWF thanks.
Use of GPS RO in Operations at NCEP
Advances in the use of observations in the ALADIN/HU 3D-Var system Roger RANDRIAMAMPIANINA, Regina SZOTÁK and Gabriella Csima Hungarian Meteorological.
2nd GRAS SAF User Workshop, June 2003, Helsingør, Denmark. 1Introduction to data assimilation An introduction to data assimilation Xiang-Yu Huang.
Different options for the assimilation of GPS Radio Occultation data within GSI Lidia Cucurull NOAA/NWS/NCEP/EMC GSI workshop, Boulder CO, 28 June 2011.
The vertical resolution of the IASI assimilation system – how sensitive is the analysis to the misspecification of background errors? Fiona Hilton and.
On Improving GFS Forecast Skills in the Southern Hemisphere: Ideas and Preliminary Results Fanglin Yang Andrew Collard, Russ Treadon, John Derber NCEP-EMC.
Data assimilation and observing systems strategies Pierre Gauthier Data Assimilation and Satellite Meteorology Division Meteorological Service of Canada.
Status of the assimilation of GPS RO observations: the COSMIC Mission L. Cucurull JCSDA/UCAR J.C. Derber, R. Treadon, and R.J. Purser.
HIRLAM 3/4D-Var developments Nils Gustafsson, SMHI.
ROSA – ROSSA Validation results R. Notarpietro, G. Perona, M. Cucca
Recent developments for a forward operator for GPS RO Lidia Cucurull NOAA GPS RO Program Scientist NOAA/NWS/NCEP/EMC NCU, Taiwan, 16 August
Use of radar data in ALADIN Marián Jurašek Slovak Hydrometeorological Institute.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
Deutscher Wetterdienst Vertical localization issues in LETKF Breogan Gomez, Andreas Rhodin, Hendrik Reich.
Slide 1 VAISALA Award Lecture Characterising the FY-3A Microwave Temperature Sounder Using the ECMWF Model Qifeng Lu, William Bell, Peter Bauer, Niels.
Page 1© Crown copyright 2004 SRNWP Lead Centre Report on Data Assimilation 2005 for EWGLAM/SRNWP Annual Meeting October 2005, Ljubljana, Slovenia.
Application of COSMIC refractivity in Improving Tropical Analyses and Forecasts H. Liu, J. Anderson, B. Kuo, C. Snyder, and Y. Chen NCAR IMAGe/COSMIC/MMM.
WP 3: DATA ASSIMILATION SMHI/FMI Status report 3rd CARPE DIEM meeting, University of Essex, Colchester, 9-10 January 2003 Structure SMHI/FMI plans for.
Introduction of temperature observation of radio-sonde in place of geopotential height to the global three dimensional variational data assimilation system.
Some thoughts on error handling for FTIR retrievals Prepared by Stephen Wood and Brian Connor, NIWA with input and ideas from others...
2 nd GRAS-SAF USER WORKSHOP Assimilation of GPS radio occultation measurements at DAO (soon GMAO) P. Poli 1,2 and J. Joiner 3 Data Assimilation Office.
Improving the Assimilation of GPS RO Data in the Tropical Lower Troposphere Bill Kuo and Hui Liu UCAR COSMIC.
ECMWF reanalysis using GPS RO data Sean Healy Shinya Kobayashi, Saki Uppala, Mark Ringer and Mike Rennie.
Preliminary results from assimilation of GPS radio occultation data in WRF using an ensemble filter H. Liu, J. Anderson, B. Kuo, C. Snyder, A. Caya IMAGe.
Improved Radio Occultation Observations for a COSMIC Follow-on Mission C. Rocken, S. Sokolovskiy, B. Schreiner UCAR / COSMIC D. Ector NOAA.
Sean Healy Presented by Erik Andersson
Impact of Blended MW-IR SST Analyses on NAVY Numerical Weather Prediction and Atmospheric Data Assimilation James Cummings, James Goerss, Nancy Baker Naval.
MODIS Winds Assimilation Impact Study with the CMC Operational Forecast System Réal Sarrazin Data Assimilation and Quality Control Canadian Meteorological.
Examination of Observation Impacts Derived from OSEs and Adjoint Models Ron Gelaro and Yanqiu Zhu NASA Global Modeling and Assimilation Office Ricardo.
Towards a Robust and Model- Independent GNSS RO Climate Data Record Chi O. Ao and Anthony J. Mannucci 12/2/15CLARREO SDT Meeting, Hampton, VA1 © 2015 California.
One-dimensional assimilation method for the humidity estimation with the wind profiling radar data using the MSM forecast as the first guess Jun-ichi Furumoto,
1 3D-Var assimilation of CHAMP measurements at the Met Office Sean Healy, Adrian Jupp and Christian Marquardt.
© Crown copyright Met Office Recent progress in the application of GPSRO data at the Met Office Michael Rennie, OPAC 2010 Workshop, 07/09/10.
1 Satellite Winds Superobbing Howard Berger Mary Forsythe John Eyre Sean Healy Image Courtesy of UW - CIMSS Hurricane Opal October 1995.
Global vs mesoscale ATOVS assimilation at the Met Office Global Large obs error (4 K) NESDIS 1B radiances NOAA-15 & 16 HIRS and AMSU thinned to 154 km.
ALADIN 3DVAR at the Hungarian Meteorological Service 1 _____________________________________________________________________________________ 27th EWGLAM.
OSEs with HIRLAM and HARMONIE for EUCOS Nils Gustafsson, SMHI Sigurdur Thorsteinsson, IMO John de Vries, KNMI Roger Randriamampianina, met.no.
Assimilation experiments with CHAMP GPS radio occultation measurements By S. B. HEALY and J.-N. THÉPAUT European Centre for Medium-Range Weather Forecasts,
CGMS-43 EUM-WP-12 Presentation1 STATUS OF EUMETSAT STUDY ON RADIO OCCULTATION SATURATION WITH REALISTIC ORBITS.
June 20, 2005Workshop on Chemical data assimilation and data needs Data Assimilation Methods Experience from operational meteorological assimilation John.
Observational Error Estimation of FORMOSAT-3/COSMIC GPS Radio Occultation Data SHU-YA CHEN AND CHING-YUANG HUANG Department of Atmospheric Sciences, National.
Slide 1 Investigations on alternative interpretations of AMVs Kirsti Salonen and Niels Bormann 12 th International Winds Workshop, 19 th June 2014.
1 MODIS winds assimilation experiments and impact studies to date at the Met Office Howard Berger, Mary Forsythe, Met Office, Bracknell/Exeter, UK UW-CIMSS.
TIMN seminar GNSS Radio Occultation Inversion Methods Thomas Sievert September 12th, 2017 Karlskrona, Sweden.
Radio occultation (RO) and its use in NWP
Data Assimilation Training
Ron Gelaro and Yanqiu Zhu NASA Global Modeling and Assimilation Office
Weak constraint 4D-Var at ECMWF
Vertical localization issues in LETKF
The ECMWF weak constraint 4D-Var formulation
FSOI adapted for used with 4D-EnVar
Item Taking into account radiosonde position in verification
Assimilation of Global Positioning System Radio Occultation Observations Using an Ensemble Filter in Atmospheric Prediction Models Hui Liu, Jefferey Anderson,
Comparison of different combinations of ensemble-based and variational data assimilation approaches for deterministic NWP Mark Buehner Data Assimilation.
New DA techniques and applications for stratospheric data sets
Data Assimilation Initiative, NCAR
Effects and magnitudes of some specific errors
Presentation transcript:

Forecast impact experiments with CHAMP RO measurements Sean Healy Acknowledgements Jean-Noël Thépaut, Sami Saarinen, Niels Bormann, Lars Isaksen, Adrian Jupp and Christian Marquardt, GRAS-SAF, UCAR, GFZ, EUMETSAT.

1)GRAS-SAF 1D bending angle observation operator. 2)Assumed observation/forward model errors. 3)A summary of first 4D-Var forecast impact experiments using CHAMP data from 1 st August – 29 th September, )Estimate of the Degrees of Freedom for Signal (DFS) of RO in 4D-Var. 5)First results with 2D operators. 6)Conclusions and future plans. Outline

1D bending angle operator Assuming spherical symmetry the bending angle can be written as: We evaluate this integral using the NWP profile information at the location of the “occultation point” defined by UCAR as location where the excess phase exceeds 500m for the first time. I’m using the GRAS-SAF bending angle code developed by myself and Christian Marquardt (To be used in validation of GRAS data at EUMETSAT). Convenient variable

1D bending angle operator: main steps Calculate the geopotential height of model levels (Note NWP surface pressure used here). Calculate refractivity, N, on (full) model levels. Convert to geometric heights (and radius) using a transform given by List (Smithsonian Met Tables). Calculate the refractive index-radius product, x=nr, on full levels. Evaluate the integral assuming N varies exponentially between the model levels with x.

Calculation of radius of model levels The geopotential heights of model levels are calculated with a standard ECMWF routine, but we need the radius of these levels. The geometric height is given by The radius is then given by Radius of curvature Undulation: height of geoid above ellipsoid Geopotential height g at latitude, Effective radius from List.

1D bending angle operator We assume the refractivity varies exponentially between the model levels and approximate to obtain (Error less than 0.1% ~1/(8ka))

1D Bending angle operator Hence, the bending can be written analytically where “erf” is the Gaussian error function. Total bending angle given by summing up contributions of this form. Bending above the model top is handled quite easily in this approach. The forward model is not computationally expensive! Don’t need to extrapolate above the NWP model top!

Assumed observation/forward model errors The derived bending angles are interpolated to 200 fixed impact heights (h=a-Roc) between the surface and 40km. Separation is ~100m near surface, 300m near 40km. The percentage error in bending angle falls linearly from 10% at h=0 to 1% at h=10km. Above 10km we use MAX(1%, 6  rad). NO vertical correlations included. Map these to refractivity space with an Abel transform, will give refractivity errors comparable to Kuo et al. (2004).

Assimilation Experiments Performed with the ECMWF 4D-Var system at T319 resolution (~62.5 km horizontal grid). Ran my own control at this resolution. All other available data, including AIRS, assimilated (~2.7 million per 12 hours). CYCLE 26R3. CHAMP data from 1 st August – 29 th September Experiment 1 used bending angle data processed by UCAR with Full Spectral Inversion (FSI) “raw” bending angle data. Typically 12,500 bending angles assimilated per 12 hours (cf 2.7 million other obs!). “Raw” means no statistical optimization of the bending angles.

Assimilation Experiments (2) Blacklisted all bending angles with impact heights (h=a- ROC) less than 5km. Known biases in the bending angles. Experiment 1: 1 st Aug – 31 st Aug, 2003 Good improvement in the stratosphere (details later in talk) but a clear degradation of the southern hemisphere 500hPa heights against observations and analyses, which we will deal with first.

RMS error in 500hPa Z in SH

RMS of control-experiment surface pressure analysis differences (Pa)

The SH 500Z problem – Ps increments The largest errors were over Antarctica and appear to be a result of large surface pressure increments. By assuming uncorrelated errors, we are probably overestimating the surface pressure information. Will address this again later in the talk, using more recent experiments.

Experiment 2: 1 st Aug. 29 th Sept Modified the tangent-linear and adjoint routines to stop the hydrostatic surface pressure increments for GPS observations. This was found to reduce the 500hPa height problems.

Neutral results with this measure.

Zonally averaged mean temperature analysis differences

Zonally averaged RMS analysis differences Significant differences in analyses despite low number of GPS RO observations!

Radiosonde comparisons for Antarctica 12h forecasts Red lines: control Black: experiment Structure in the mean fit caused by inconsistencies in the AIRS and AMSU bias corrections schemes (G. Kelly, ECMWF Pers. Comm)

Verification against radiosondes (SH) Red control Blue experiment

Verification against radiosondes(Tr)

Degrees of Freedom for signal (DFS) The DFS is an information content measure that is used widely in satellite meteorology, e.g., in channel selection. It can be written as, Solution error covariance Background error covariance Recently, there has been increasing interest in calculating the DFS of the 4D-Var system as a means of comparing the contribution of different ob-types, but its quite complicated because of the size of the matrices (Fisher, 2003). Ie, the Trace of the “Averaging-Kernel”

DFS(2) But we have found (Rodgers, 2000) an alternative approach because Hence, we can estimate the DFS from the time series “Jb” cost value at the analysis. Further, we can estimate the DFS of the RO observations by looking at the differences of the Jb in the control and experiments.

DFS(3) The DFS of the control is The DFS of the GPS experiment is Hence, the DFS associated with the GPS measurements We have increased the total number of observations by ~0.5% but Increased the DFS by ~4%.

Hence, the DFS per RO profile is ~34 (2700/80) and The DFS per bending angle is ~0.216 (2700/12500). Put these numbers in context, Fisher (2003) estimates the DFS of 40 AMSUA radiances from 5 profiles as in a 2 degree by 2 degree box as The DFS of AIRS is This is ~10% of the total (typically, 1 million radiances).

Current work: 2D bending angle operators. Approach 1 (Eyre, 1994) : We are currently testing this 2D observation operator in the 4D-Var system. This has required substantial re-coding of the 4D-Var to enable the use of 2D operators (Mats Hamrud). The 2D operator solves the bending angle integral, but uses the radial gradient for the rays position within the 2D plane.  r Now depends on   s, the change in path-length, can be written in terms of 

Approach 2: 4 th order Runge-Kutta solver But we can simplify the 3 rd term We have coded the TL and adjoints of both approaches and introduced them into the 4D-Var system! Rodgers Page 149

Both approaches All the rays start from the same “occultation point” – as defined in the UCAR file. A plane 2D plane is constructed using the azimuthal angle defined in the UCAR file. The 2D plane contains 31 profiles separated by 40km. Central profile = occultation point. 1)calculate the bending from the tangent point along the path towards the LEO 2)Calculate the bending from the tangent point along the path towards the GPS. 3)Add these bending angles together to get the total bending. The height of the tangent point (starting point of the 2D ray path) is estimated from the “derived impact parameter” – i.e., the value given in the data file. It is derived assuming spherical symmetry!

Some relative CPU times Have estimated some approximate CPU times for the 1d and 2d operators using the F90 cpu_time command. The runs were performed on a standard linux pc. The timings are for the bending angle calculation routine, after the refractivity field has be derived. Evaluate 160 bending angle values. Forward Operator CPU time (seconds) Runge-Kutta0.25 Eyre (2d)0.007 Standard (1d) ~180 times more expensive than the 1D, but this value is not prohibitive.

First 2D operator (Eyre) impact experiments Ran from 1 st July – 31 st August, 2004, using CYCLE 29R1 of the ECMWF model. Ran a control, 1d operator and 2d operator experiments. The same observation errors were used in the 1d and 2d experiments. Used all the bending angle measurements, ie. No longer blacklisting below 4km. Switched the surface pressure increments back on (These appeared to cause the problems in the original experiments).

Surface Pressure increment problem Note, in the original experiments the largest differences exceeded 2hPa.

Surface pressure increment problem The 1D operator has not been modified/improved since the initial experiments. Has the UCAR processing improved - any ideas? However, CYCLE 29R1 has been modified significantly since CYCLE 26R3. In particular, a new bias correction scheme for surface pressure observations has been introduced and the synop. and drifting buoy observation errors have been significantly reduced. As a result, the surface pressure over Antarctica is far more constrained than in the original experiments and therefore the GPS RO increments are smaller.

O-B and O-A bending angle distributions for impact heights between 4.5km- 5.8km. Red is the 1D operator, black 2D. The distributions are very similar. Could argue that the NH and SH O-B distributions are ~4-5% narrower with the 2D operator, but the difference is relatively small.

Forecast Scores (Z500) Red = 2d Blue = 1d Differences not statistically significant.

RMS Z500 error at day 5 (Against Analysis) Red = 2D

RMS Z500 errors at day-5 (Against radiosonde) Red = 2D

Summary Implemented a GRAS-SAF 1d bending angle observation operator in the ECMWF 4D-Var system. In the first forecast impact experiments we had problems with the surface pressure increments. They were switched off. We have found that relatively few CHAMP observations lead to quite significant temperature analysis differences in the stratosphere. The CHAMP measurements improve the forecast fit to radiosondes in the SH ( hPa) and 100 hPa in the tropics. Large DFS information content value associated with GPS observations.

Summary (2) We have developed two versions of a 2D bending angle operator. Although they are more expensive than 1D, the cost is not prohibitive. We do not have the same difficulty with surface pressure increments when using CYCLE 29R1. Developments in the bias correction of surface pressure obs. and re-tuning of their errors suggest the background is now more constrained. Some improvement (~ 5%) in RMS O-B bending angle fit near the surface. 2D versus 1D operator forecast impact unclear at the moment.