CP-FTMW Spectroscopy of Metal-containing Complexes Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon Max-Planck Advanced Study Group at the Center.

Slides:



Advertisements
Similar presentations
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
Advertisements

Spectra, Structures, and Dynamics of Weakly Bound Clusters from Dimers to Nonamers Wolfgang Jäger Department of Chemistry, University of Alberta.
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Broadband Rotational Spectrum and Molecular Geometry of OC  AgI Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
New Applications of Broadband Rotational Spectroscopy Wednesday 18 th April 2012 ERC Starting Grant Presentation Nicholas R. Walker (Left) The CP-FTMW.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
The Search is Over: Design and Applications of a Chirped Pulse Fourier Transform Microwave (CP- FTMW) Spectrometer for Ground State Rotational Spectroscopy.
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Microwave Rotational Spectroscopy
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
An Acoustic Demonstration Model for CW and Pulsed Spectroscopy Experiments Torben Starck, Heinrich Mäder Institut für Physikalische Chemie Christian-Albrechts-Universität.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
A FABRY-PERÓT CAVITY PULSED FOURIER TRANSFORM W-BAND SPECTROMETER WITH A PULSED NOZZLE SOURCE. GARRY S. GRUBBS II, CHRISTOPHER T. DEWBERRY AND STEPHEN.
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
Microwaves are not just for Cooking! Nicholas R. Walker University of Bristol by 1 30 th January,
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Nicholas R. Walker, Susanna L. Stephens, David P. Tew and Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University,
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Daniel P. Zaleski, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. Evidence.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
A New E-Band (60 – 90 GHz) Fourier Transform Millimeter-wave Spectrometer DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department of Astronomy.
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The pure Inversion-Tunneling Transition of Ammonia in Helium Droplets Rudi Lehnig and Wolfgang Jäger Department of Chemistry, University of Alberta, Edmonton,
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.
High Resolution Microwave Spectra of He N – and (H 2 ) N – Linear Molecule Clusters Wolfgang Jäger Department of Chemistry, University of Alberta, Edmonton,
Microwave Spectra and Structure of CF 3 I···PH 3 by chirped-pulse spectroscopy in context of the CF 3 I···B and ClI···B series Susanna L. Stephens, Nick.
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Daniel P. Zaleski and Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. David P. Tew and Anthony.
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 S-AgCl Nicholas R. Walker, David Wheatley, Anthony C. Legon 64 th OSU International Symposium on.
Rotational Spectroscopy of OCS in Superfluid Helium Nanodroplets Paul Raston, Rudolf Lehnig, and Wolfgang Jäger Department of Chemistry, University of.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Observation of combination bands involving intermolecular vibrations of CO 2 -, N 2 - and OCS-N 2 O complexes using an external cavity quantum cascade.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
SEEING IS BELIEVING: An 11 GHz molecular beam rotational spectrum (7.5 – 18.5 GHz) with 100 kHz resolution in 15  s measurement time Brian C. Dian, Kevin.
Spectroscopy of (He) N -Molecule Clusters: Tracing the Onset of Superfluidity Yunjie Xu and Wolfgang Jäger Department of Chemistry, University of Alberta,
The microwave spectroscopy study of 1,2-dimethoxyethane
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Characterisation and Control of Cold Chiral Compounds
Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
Microwave spectra of Ar...AgI and H2O...AgI produced by laser ablation
The rotational spectrum of the urea isocyanic acid complex
Methylindoles – Microwave Spectroscopy
Michal M. Serafin, Sean A. Peebles
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
Presentation transcript:

CP-FTMW Spectroscopy of Metal-containing Complexes Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon Max-Planck Advanced Study Group at the Center for Free Electron Laser Science 1 22 nd September, Engineering and Physical Sciences Research Council

Introduction 1)Microwave spectroscopy provides high precision in the determination of molecular geometries and hyperfine parameters. Can also provide insight into barriers to internal rotation and internal dynamics. 2)Recently completed construction of a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer at the University of Bristol. The instrument benefits from recent advances in electronics that allow direct digitisation of waves at GHz frequencies. 3)Present results from complexes of CF 3 I that illustrate the capabilities of the spectrometer. 4) Show how the CP-FTMW spectrometer is being applied to the study of metal-containing complexes.

Animation : Prof. Wolfgang Jäger, Dept. of Chemistry, University of Alberta, Edmonton, AB, CANADA, T6G 2G2. 7

Power divider SPST switch Mixer Low noise amplifier Pin diode limiter Adjustable attenuator 300 W Power amplifier AWG ( GHz) Oscilloscope (0-12 GHz) 10 MHz reference frequency PDRO (19.00 GHz) GHz GHz 12.2 GHz Low-pass band filter CP-FTMW Spectrometer

Multiple Free Induction Decay Acquisition per Valve Pulse Faraday Discuss., 2011, 150, 284–285 Small percentage of OCS in 2 bar of helium.

Faraday Discuss., 2011, 150, 284–285

V. Amico, S. V. Meille, E. Corradi, M. T. Messina and G. Resnati, J. Am. Chem. Soc. 1998, 120, E. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo and G. Resnati, Tetrahedron Lett. 1999, 40, Crystal Engineering with Halogen Bonds

CF 3 I CF 3 I  NH 3 ?? CF 3 I  NH 3

[1] G. T. Fraser, F. J. Lovas, R. D. Suenram, D. D. Nelson, Jr. and W. Klemperer, J. Chem. Phys. 1986, 84, [2] G. Valerio, G. Raos, S. V. Meille, P. Metrangolo and G. Resnati, J. Phys. Chem. A, 2000, 104, C 3v Symmetric top ? Internal rotation? The Hamiltonian

Energy/MHz Exp. Sim. [80 kHz FWHM] Energy/MHz A species sim. E species sim. Total (A and E) sim. Simulation and fitting using PGOPHER (2010, version ), a Program for Simulating Rotational Structure, C. M. Western, University of Bristol, CF 3 I  14 NH 3

Energy/MHz Exp. Sim. CF 3 I  15 NH 3

CF 3 I  14 N(CH 3 ) 3 CF 3 I Energy/MHz Exp. A and E species sim. CF 3 I  14 N(CH 3 ) 3

3.054 Å > r N  I > Å for CF 3 I  NH 3 where 30  >  >0  and 8  >  >0  Å > r N  I > Å for CF 3 I  N(CH 3 ) 3 where 30  >  >0  and 8  >  >0  Structure implies  = 20.5(12)  for CF 3 I  NH 3 and  = 16.2(20)  for CF 3 I  N(CH 3 )

V. Amico, S. V. Meille, E. Corradi, M. T. Messina and G. Resnati, J. Am. Chem. Soc. 1998, 120, E. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo and G. Resnati, Tetrahedron Lett. 1999, 40, r N  I =2.84(3) Å. r N  I close to 2.80 Å Å > r N  I > Å for CF 3 I  N(CH 3 ) 3 where 30  >  >0  and 8  >  >0  Å > r N  I > Å for CF 3 I  NH 3 where 30  >  >0  and 8  >  >0  Correspondence with solid state

H 2 S  ICF 3 Spectrum assigned using a symmetric top Hamiltonian. H 2 O  C 6 H 6 and H 2 S  C 6 H 6 [1] E. Arunan et al. J. Chem. Phys., 2002, 117, [2] S. Suzuki et al. Science, 1992, 257, [3] H. S. Gutowsky et al. J. Chem. Phys., 1993, 99, [4] H. Ram Prasad et al. J. Mol. Spectrosc. 2005, 232, H 2 O  CF 3 Cl and H 2 O  CF 4 [5] W. Caminati, A. Maris, A. Dell’Erba and P. G. Favero, Angew. Chem. Int. Ed. 2006, 45, 6711 – [6] L. Evangelisti, G. Feng, P. Écija, E. J. Cocinero, F. Castaño and W. Caminati, Angew. Chem. Int. Ed., (in press). Exp. Sim.

H 2 O  ICF 3 Superposition of spectra assigned using symmetric and asymmetric top Hamiltonian’s, respectively. Sym. Asym. Total sim. Exp. Total sim.

Laser ablation source informed by the designs currently used by Duncan and co-workers, Gerry and co-workers, Ziurys and co-workers. Laser ablation source

OC  AgI Frequency/MHz CF 3 I 107 AgI 109 AgI AgI

OC  AgI Frequency / MHz 107 AgI 109 AgI OC  ICF 3 Exp. Sim. OC  107 AgI OC  109 AgI

Conclusions CP-FTMW spectroscopy has greatly accelerated the speed at which it is possible to measure and analyse rotational spectra. In the first year of full operation, the spectra of NH 3  ICF 3, N(CH 3 ) 3  ICF 3, H 2 O  ICF 3, H 2 S  ICF 3, OC  ICF 3, Kr  ICF 3 have been analysed and described in a series of papers. (Two papers in press with PCCP, one paper in press with JCP). The spectra of OC  AgI and H 2 S  AgI have been measured and the molecular geometries have been determined. Further analysis and theoretical calculations are in progress. Future applications in molecular dynamics and analytical chemistry seem possible.

Acknowledgements University of Bristol Susanna Stephens Tony C. Legon Colin M. Western David P. Tew University of Virginia Brooks H. Pate Stephen T. Shipman Financial Support Engineering and Physical Sciences Research Council University of Sheffield Michael Hippler University of Oxford Brian Howard

– Invention of the Maser (Gordon, Zeiger and Townes) First high resolution spectroscopic measurements using microwaves (B. Bleaney) – First polyatomic molecule identified in space is NH – rotational spectra of OCS in He droplets 1981 – cavity FT-MW spectroscopy (Balle and Flygare). Pre-reactive complexes Hydrogen and van der Waals bonding. Explore intermolecular potentials. 3

Experimental Ar/H 2 O/CCl 4 6 Pump Nozzle and Cu rod Lens 532 nm Ar/H 2 O/CCl 4 supersonic expansion

MW Amplifier SPDT switch Digitiser and computer MW Signal generator Image rejection mixer Low Band Pass Filter RF Mixer Pre-amp 20 MHz 10 MHz Single Sideband modulator e - 20 MHz Fabry-Perot Resonator Parallel Propagation 350 mm diameter 840 mm curvature radius ~700 mm distance aluminum e e e - 20 MHz ( m - e ) +20 MHz +Δ MW Signal Generator 20 MHz Δ +20 MHz Frequency Doubler Attenuators Adjustable frequency (6 ≤ e ≥ 18 GHz) -20 MHz Low Noise Amplifier m m =Δ +20 MHz Balle-Flygare FTMW Spectrometer

CF 3 I But what’s this stuff ???? 3 hours of averaging, CF 3 I, CO and Ar gas sample

A new complex of CF 3 I and CO

But what’s this stuff ???? CF 3 I 6 hours of averaging, CF 3 I, N(CH 3 ) 3 and Ar gas sample

A new complex of CF 3 I and N(CH 3 ) 3

Energy/MHz Sym. Asym. Total sim. Exp. C 2 H 4  ICF 3 Prof. Brian Howard, University of Oxford

Frequency / MHz 107 AgI 109 AgI. H2SH2S  107 AgI H2SH2S  109 AgI H 2 S  ICF 3 H 2 S  AgI

V( φ)/cm -1 φ/deg 39.1 º V = “Identification and molecular geometry of a weakly bound dimer (H 2 O,HCl) in the gas phase by rotational spectroscopy” A. C. Legon and L. C. Willoughby, Chem. Phys. Letters, 95, , (1983).

/ MHz Ionicity, i c M=Cu M=AgM=CuM=Ag MCl16.2  32.1  Ar  MCl33.2  28.0  Kr  MCl36.5  27.3  H 2 O  MCl50.3  25.5  H 3 N  MCl  29.8  0.73 H 2 S  MCl61.8  23.0  OC  MCl70.8  21.5  H 4 C 2  MCl63.8  21.0  / MHzIonicity, i c NaCl d  Ar  NaCl d  Determination of the molecular geometry of each of the above complexes completed (where possible from isotopic substitution). Nuclear quadrupole coupling constants provide measure of charge redistribution after formation of the complex. Nuclear Quadrupole Coupling Constants

H 2 O  AgCl r AgCl / År AgO / Å  / ˚ cc-pVTZ a cc-pVQZ b r0r (6)2.198(10)37.4(16) H 3 N  AgCl r AgCl / År AgN / Å  AgNH cc-pVTZ cc-pVQZ r0r (6) (6)113.48(2) H 2 S  AgCl r AgCl / År AgS / Å  / ˚ cc-pVTZ cc-pVQZ r0r (13) (12)78.052(6) H 4 C 2  AgCl r AgCl / År AgX / Å  CCH cc-pVTZ cc-pVQZ r0r (8)2.1719(9)123.02(6) CCSD(T) calculations. cc-pVTZ basis sets for H, O. cc-pV(T+d)Z basis set for Cl. cc-pVTZ-PP for Ag. Theory Dr. David Tew, University of Bristol

Endo and co-workers Publications on B  MX Complexes H 3 N...AgCl, V.A. Mikhailov et al., Chem. Phys. Lett. 499, (2010) H 2 O...CuCl and H 2 O...AgCl ; V.A. Mikhailov et al., J. Chem. Phys., 134, (2011) H 2 O...AgF, S.L. Stephens et al., J. Mol. Spectrosc. 267, (2011) H 2 S...CuCl and H 2 S...AgCl; N.R. Walker et al., J. Chem. Phys. 135, (2011) C 2 H 4...Ag-Cl; S.L. Stephens et al., J. Chem. Phys. 135, (2011)