The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.

Slides:



Advertisements
Similar presentations
Department of Physics University of Toronto Low Temperature Thermal Transport Across the Cuprate Phase Diagram Mike Sutherland Louis Taillefer Rob Hill.
Advertisements

Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Quantum critical phenomena Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu Quantum critical phenomena Talk online: sachdev.physics.harvard.edu.
Quantum Phase Transitions Subir Sachdev Talks online at
Detecting collective excitations of quantum spin liquids Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
AdS/CFT and condensed matter Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Emily Dunkel (Harvard) Joel Moore (Berkeley) Daniel Podolsky (Berkeley) Subir Sachdev (Harvard) Ashvin Vishwanath (Berkeley) Philipp Werner (ETH) Matthias.
Subir Sachdev Science 286, 2479 (1999). Quantum phase transitions in atomic gases and condensed matter Transparencies online at
Talk online: : Sachdev Ground states of quantum antiferromagnets in two dimensions Leon Balents Matthew Fisher Olexei Motrunich Kwon Park Subir Sachdev.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Inching Towards Strange Metallic Holography David Tong Imperial, Feb 2010 Based on “Towards Strange Metallic Holography”, with Sean Hartnoll,
Quantum critical transport, duality, and M-theory hep-th/ Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh.
Quantum criticality, the cuprate superconductors, and the AdS/CFT correspondence HARVARD Talk online: sachdev.physics.harvard.edu.
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Strongly interacting cold atoms Subir Sachdev Talks online at
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Subir Sachdev (Harvard) Philipp Werner (ETH) Matthias Troyer (ETH) Universal conductance of nanowires near the superconductor-metal quantum transition.
cond-mat/ , cond-mat/ , and to appear
Dual vortex theory of doped antiferromagnets Physical Review B 71, and (2005), cond-mat/ , cond-mat/ Leon Balents (UCSB) Lorenz.
Talk online at Eugene Demler (Harvard) Kwon Park (Maryland) Anatoli Polkovnikov Subir Sachdev T. Senthil (MIT) Matthias.
Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs cond-mat/ ,
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
Magnetic quantum criticality Transparencies online at Subir Sachdev.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Equilibrium dynamics of entangled states near quantum critical points Talk online at Physical Review Letters 78, 843.
LS Cable, a South Korean company based in Anyang-si near Seoul, has ordered three million metres of superconducting wire from US firm American Superconductor.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
Holographic Superconductors
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Quantum criticality of Fermi surfaces in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum critical transport in graphene Quantum critical transport in graphene Lars Fritz, Harvard Joerg Schmalian, Iowa Markus Mueller, Harvard Subir Sachdev,
The phase diagrams of the high temperature superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates HARVARD Talk online: sachdev.physics.harvard.edu.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, July 6, 2010 Andrey Chubukov University of Wisconsin.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Phys. Rev. Lett M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002). Superfluid-insulator transition.
Quantum criticality, the AdS/CFT correspondence, and the cuprate superconductors HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum critical transport and AdS/CFT HARVARD Lars Fritz, Harvard Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Mueller,
The Landscape of the Hubbard model HARVARD Talk online: sachdev.physics.harvard.edu Subir Sachdev Highly Frustrated Magnetism 2010 Johns Hopkins University.
Spectral function in Holographic superconductor Wen-Yu Wen (NTU) Taiwan String Theory Workshop 2010.
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Quantum Criticality and Black Holes Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Review on quantum criticality in metals and beyond
Toward a Holographic Model of d-wave Superconductors
Quantum vortices and competing orders
T. Senthil Leon Balents Matthew Fisher Olexei Motrunich Kwon Park
Electrical and thermal transport near quantum phase transitions in condensed matter, and in dyonic black holes Sean Hartnoll (KITP) Pavel.
Search of a Quantum Critical Point in High Tc Superconductors
Experimental Evidences on Spin-Charge Separation
Quantum phases and critical points of correlated metals
and the phases of matter
Quantum phase transitions out of the heavy Fermi liquid
Presentation transcript:

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions HARVARD Talk online: sachdev.physics.harvard.edu

Max Metlitski, Harvard Frederik Denef, Harvard Lars Fritz, Cologne Victor Galitski, Maryland Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Muller, Trieste Jorg Schmalian, Iowa Dam Son, Washington Frederik Denef, Harvard Lars Fritz, Cologne Victor Galitski, Maryland Sean Hartnoll, Harvard Christopher Herzog, Princeton Pavel Kovtun, Victoria Markus Muller, Trieste Jorg Schmalian, Iowa Dam Son, Washington HARVARD Eun Gook Moon, Harvard

1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline

1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline

Graphene

Conical Dirac dispersion

Quantum phase transition in graphene tuned by a gate voltage Electron Fermi surface

Hole Fermi surface Electron Fermi surface Quantum phase transition in graphene tuned by a gate voltage

Electron Fermi surface Hole Fermi surface There must be an intermediate quantum critical point where the Fermi surfaces reduce to a Dirac point Quantum phase transition in graphene tuned by a gate voltage

Quantum critical graphene

Quantum critical Quantum phase transition in graphene

Quantum critical transport S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum critical transport K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Quantum critical transport P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, (2005), 8714 (1997).

Quantum critical transport in graphene L. Fritz, J. Schmalian, M. Müller and S. Sachdev, Physical Review B 78, (2008) M. Müller, J. Schmalian, and L. Fritz, Physical Review Letters 103, (2009)

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007) Quantum critical

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007) Quantum critical

Magnetohydrodynamics of quantum criticality S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

Magnetohydrodynamics of quantum criticality S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B (2007)

Magnetohydrodynamics of quantum criticality

1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline

1. Graphene `Topological’ Fermi surface transition 2. The cuprate superconductors Fluctuating spin density waves, and pairing by gauge fluctuations Outline

The cuprate superconductors

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange Metal

Fermi surface+antiferromagnetism Hole states occupied Electron states occupied +

Fermi surfaces in electron- and hole-doped cuprates Hole states occupied Electron states occupied

Spin density wave theory

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Hot spots

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hole pockets Hot spots

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997). Hole pockets Electron pockets Hole-doped cuprates Fermi surface breaks up at hot spots into electron and hole “pockets” Hot spots

arXiv: Fermi liquid behaviour in an underdoped high Tc superconductor Suchitra E. Sebastian, N. Harrison, M. M. Altarawneh, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. G. Lonzarich Evidence for small Fermi pockets

Spin density wave theory in hole-doped cuprates

Fermi pockets in hole-doped cuprates

Charge carriers in the lightly-doped cuprates with Neel order Electron pockets Hole pockets

Theory of underdoped cuprates

Higgs Coulomb

Higgs Coulomb

Complete theory

R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, (2008).

T=0 Phase diagram Higgs Coulomb

T=0 Phase diagram d-wave superconductivity

T=0 Phase diagram d-wave superconductivity Competition between antiferromagnetism and superconductivity shrinks region of antiferromagnetic order: feedback of “probe fermions” on CFT is important

Theory of quantum criticality in the cuprates T*T*

T*T*

T*T*

G. Knebel, D. Aoki, and J. Flouquet, arXiv: Similar phase diagram for CeRhIn 5

T*T*

T*T*

Similar phase diagram for the pnictides Ishida, Nakai, and Hosono arXiv: v1 S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, S. L. Bud'ko, P. C. Canfield, J. Schmalian, R. J. McQueeney, A. I. Goldman, arXiv:

T*T*

S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998). R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, (2008).

S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998). R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Phys. Rev. B 78, (2008).

T*T*

R. K. Kaul, M. Metlitksi, S. Sachdev, and Cenke Xu, Physical Review B 78, (2008). Onset of superconductivity disrupts SDW order, but VBS/CDW/ Ising-nematic ordering can survive VBS/CDW and/or Ising-nematic order T I-n

General theory of finite temperature dynamics and transport near quantum critical points, with applications to antiferromagnets, graphene, and superconductors Conclusions

The AdS/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density Conclusions

Gauge theory for pairing of Fermi pockets in a metal with fluctuating spin density wave order: Many qualitative similarities to holographic strange metals and superconductors