Redundant Array of Inexpensive Disks (RAID). Redundant Arrays of Disks Files are "striped" across multiple spindles Redundancy yields high data availability.

Slides:



Advertisements
Similar presentations
RAID Redundant Arrays of Independent Disks Courtesy of Satya, Fall 99.
Advertisements

Redundant Array of Independent Disks (RAID) Striping of data across multiple media for expansion, performance and reliability.
Copyright © 2009 EMC Corporation. Do not Copy - All Rights Reserved.
What is RAID Redundant Array of Independent Disks.
1 Lecture 18: RAID n I/O bottleneck n JBOD and SLED n striping and mirroring n classic RAID levels: 1 – 5 n additional RAID levels: 6, 0+1, 10 n RAID usage.
Faculty of Information Technology Department of Computer Science Computer Organization Chapter 7 External Memory Mohammad Sharaf.
RAID (Redundant Arrays of Independent Disks). Disk organization technique that manages a large number of disks, providing a view of a single disk of High.
RAID A RRAYS Redundant Array of Inexpensive Discs.
RAID Redundant Array of Independent Disks
Raid dr. Patrick De Causmaecker What is RAID Redundant Array of Independent (Inexpensive) Disks A set of disk stations treated as one.
CSCE430/830 Computer Architecture
“Redundant Array of Inexpensive Disks”. CONTENTS Storage devices. Optical drives. Floppy disk. Hard disk. Components of Hard disks. RAID technology. Levels.
Enhanced Availability With RAID CC5493/7493. RAID Redundant Array of Independent Disks RAID is implemented to improve: –IO throughput (speed) and –Availability.
Chapter 3 Presented by: Anupam Mittal.  Data protection: Concept of RAID and its Components Data Protection: RAID - 2.
CSE521: Introduction to Computer Architecture Mazin Yousif I/O Subsystem RAID (Redundant Array of Independent Disks)
CSE 486/586 CSE 486/586 Distributed Systems Case Study: Facebook f4 Steve Ko Computer Sciences and Engineering University at Buffalo.
Lecture 36: Chapter 6 Today’s topic –RAID 1. RAID Redundant Array of Inexpensive (Independent) Disks –Use multiple smaller disks (c.f. one large disk)
RAID Technology. Use Arrays of Small Disks? 14” 10”5.25”3.5” Disk Array: 1 disk design Conventional: 4 disk designs Low End High End Katz and Patterson.
CS 430 – Computer Architecture Disks
REDUNDANT ARRAY OF INEXPENSIVE DISCS RAID. What is RAID ? RAID is an acronym for Redundant Array of Independent Drives (or Disks), also known as Redundant.
EECC551 - Shaaban #1 Lec # 13 Winter Magnetic Disk CharacteristicsMagnetic Disk Characteristics I/O Connection StructureI/O Connection Structure.
1 Recap (RAID and Storage Architectures). 2 RAID To increase the availability and the performance (bandwidth) of a storage system, instead of a single.
ENGS 116 Lecture 181 I/O Interfaces, A Little Queueing Theory RAID Vincent H. Berk November 19, 2007 Reading for Today: Sections 7.1 – 7.4 Reading for.
Computer ArchitectureFall 2007 © November 28, 2007 Karem A. Sakallah Lecture 24 Disk IO and RAID CS : Computer Architecture.
CS152 / Kubiatowicz Lec26.1 5/03/01©UCB Spring 2001 CS152 Computer Architecture and Engineering Lecture 26 Low Power Design May 3, 2001 John Kubiatowicz.
First magnetic disks, the IBM 305 RAMAC (2 units shown) introduced in One platter shown top right. A RAMAC stored 5 million characters on inch.
Computer ArchitectureFall 2008 © November 12, 2007 Nael Abu-Ghazaleh Lecture 24 Disk IO.
Disk Technologies. Magnetic Disks Purpose: – Long-term, nonvolatile, inexpensive storage for files – Large, inexpensive, slow level in the memory hierarchy.
ICOM 6005 – Database Management Systems Design Dr. Manuel Rodríguez-Martínez Electrical and Computer Engineering Department Lecture 6 – RAID ©Manuel Rodriguez.
Chapter 6 RAID. Chapter 6 — Storage and Other I/O Topics — 2 RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f.
Eng. Mohammed Timraz Electronics & Communication Engineer University of Palestine Faculty of Engineering and Urban planning Software Engineering Department.
Memory/Storage Architecture Lab Computer Architecture Lecture Storage and Other I/O Topics.
Lecture 4 1 Reliability vs Availability Reliability: Is anything broken? Availability: Is the system still available to the user?
CS 352 : Computer Organization and Design University of Wisconsin-Eau Claire Dan Ernst Storage Systems.
CSE 321b Computer Organization (2) تنظيم الحاسب (2) 3 rd year, Computer Engineering Winter 2015 Lecture #4 Dr. Hazem Ibrahim Shehata Dept. of Computer.
RAID Storage EEL4768, Fall 2009 Dr. Jun Wang Slides Prepared based on D&P Computer Architecture textbook, etc.
Redundant Array of Independent Disks
Two or more disks Capacity is the same as the total capacity of the drives in the array No fault tolerance-risk of data loss is proportional to the number.
N-Tier Client/Server Architectures Chapter 4 Server - RAID Copyright 2002, Dr. Ken Hoganson All rights reserved. OS Kernel Concept RAID – Redundant Array.
1 Chapter 7: Storage Systems Introduction Magnetic disks Buses RAID: Redundant Arrays of Inexpensive Disks.
Lecture 9 of Advanced Databases Storage and File Structure (Part II) Instructor: Mr.Ahmed Al Astal.
Redundant Array of Inexpensive Disks aka Redundant Array of Independent Disks (RAID) Modified from CCT slides.
CSI-09 COMMUNICATION TECHNOLOGY FAULT TOLERANCE AUTHOR: V.V. SUBRAHMANYAM.
RAID REDUNDANT ARRAY OF INEXPENSIVE DISKS. Why RAID?
RAID SECTION (2.3.5) ASHLEY BAILEY SEYEDFARAZ YASROBI GOKUL SHANKAR.
"1"1 Introduction to Managing Data " Describe problems associated with managing large numbers of disks " List requirements for easily managing large amounts.
I/O—I/O Busses Professor Alvin R. Lebeck Computer Science 220 Fall 2001.
EECS 262a Advanced Topics in Computer Systems Lecture 3 Filesystems (Con’t) September 10 th, 2012 John Kubiatowicz and Anthony D. Joseph Electrical Engineering.
The concept of RAID in Databases By Junaid Ali Siddiqui.
Αρχιτεκτονική Υπολογιστών Ενότητα # 6: RAID Διδάσκων: Γεώργιος Κ. Πολύζος Τμήμα: Πληροφορικής.
Chapter 8 Secondary Memory. Topics Types of External Memory Magnetic Disk Optical Magnetic Tape.
Enhanced Availability With RAID CC5493/7493. RAID Redundant Array of Independent Disks RAID is implemented to improve: –IO throughput (speed) and –Availability.
RAID Technology By: Adarsha A,S 1BY08A03. Overview What is RAID Technology? What is RAID Technology? History of RAID History of RAID Techniques/Methods.
RAID TECHNOLOGY RASHMI ACHARYA CSE(A) RG NO
Network-Attached Storage. Network-attached storage devices Attached to a local area network, generally an Ethernet-based network environment.
CMSC 611: Advanced Computer Architecture I/O & Storage Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 10: Mass-Storage Systems.
I/O Errors 1 Computer Organization II © McQuain RAID Redundant Array of Inexpensive (Independent) Disks – Use multiple smaller disks (c.f.
Advanced Computer Architecture CS 704 Advanced Computer Architecture Lecture 40 Input Output Systems (RAID and I/O System Design) Prof. Dr. M. Ashraf Chughtai.
HP AutoRAID (Lecture 5, cs262a)
Multiple Platters.
RAID Redundant Arrays of Independent Disks
Vladimir Stojanovic & Nicholas Weaver
HP AutoRAID (Lecture 5, cs262a)
RAID RAID Mukesh N Tekwani
ICOM 6005 – Database Management Systems Design
TECHNICAL SEMINAR PRESENTATION
UNIT IV RAID.
RAID RAID Mukesh N Tekwani April 23, 2019
Presentation transcript:

Redundant Array of Inexpensive Disks (RAID)

Redundant Arrays of Disks Files are "striped" across multiple spindles Redundancy yields high data availability Disks will fail Contents reconstructed from data redundantly stored in the array Capacity penalty to store it Bandwidth penalty to update Mirroring/Shadowing (high capacity cost) Horizontal Hamming Codes (overkill) Parity & Reed-Solomon Codes Failure Prediction (no capacity overhead!) VaxSimPlus - Technique is controversial Techniques:

Array Reliability Reliability of N disks = Reliability of 1 Disk ÷N 50,000 Hours ÷ 70 disks = 700 hours Disk system MTTF: Drops from 6 years to 1 month! Arrays without redundancy too unreliable to be useful! Hot spares support reconstruction in parallel with access: very high media availability can be achieved Hot spares support reconstruction in parallel with access: very high media availability can be achieved

RAID Techniques Disk Mirroring, Shadowing Each disk is fully duplicated onto its "shadow" Logical write = two physical writes 100% capacity overhead Parity Data Bandwidth Array Parity computed horizontally Logically a single high data bw disk High I/O Rate Parity Array Interleaved parity blocks Independent reads and writes Logical write = 2 reads + 2 writes Parity + Reed-Solomon codes

Problems of Disk Arrays: Small Writes D0D1D2 D3 P D0' + + D1D2 D3 P' new data old data old parity XOR (1. Read) (2. Read) (3. Write) (4. Write) RAID-5: Small Write Algorithm 1 Logical Write = 2 Physical Reads + 2 Physical Writes

RAID 1: Disk Mirroring/Shadowing Each disk is fully duplicated onto its "shadow" Very high availability can be achieved Bandwidth sacrifice on write: Logical write = two physical writes Reads may be optimized Most expensive solution: 100% capacity overhead Targeted for high I/O rate, high availability environments recovery group

RAID 3: Parity Disk P logical record Striped physical records Parity computed across recovery group to protect against hard disk failures 33% capacity cost for parity in this configuration wider arrays reduce capacity costs, decrease expected availability, increase reconstruction time Arms logically synchronized, spindles rotationally synchronized logically a single high capacity, high transfer rate disk Targeted for high bandwidth applications: Scientific, Image Processing

RAID 5+: High I/O Rate Parity A logical write becomes four physical I/Os Independent writes possible because of interleaved parity Reed-Solomon Codes ("Q") for protection during reconstruction A logical write becomes four physical I/Os Independent writes possible because of interleaved parity Reed-Solomon Codes ("Q") for protection during reconstruction D0D1D2 D3 P D4D5D6 P D7 D8D9P D10 D11 D12PD13 D14 D15 PD16D17 D18 D19 D20D21D22 D23 P Disk Columns Increasing Logical Disk Addresses Stripe Unit Targeted for mixed applications

Subsystem Organization host array controller single board disk controller single board disk controller single board disk controller single board disk controller host adapter manages interface to host, DMA control, buffering, parity logic physical device control often piggy-backed in small format devices striping software off-loaded from host to array controller no applications modifications no reduction of host performance

System Availability: Orthogonal RAIDs Array Controller String Controller String Controller String Controller String Controller String Controller String Controller... Data Recovery Group: unit of data redundancy Redundant Support Components: fans, power supplies, controller, cables End to End Data Integrity: internal parity protected data paths

System-Level Availability Fully dual redundant I/O Controller Array Controller Recovery Group Goal: No Single Points of Failure Goal: No Single Points of Failure host with duplicated paths, higher performance can be obtained when there are no failures