Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006.

Slides:



Advertisements
Similar presentations
Neutrinos Louvain, February 2005 Alan Martin Arguably the most fascinating of the elementary particles. Certainly they take us beyond the Standard Model.
Advertisements

Lecture 3 – neutrino oscillations and hadrons
New Large* Neutrino Detectors
Neutrino oscillations/mixing
Recent Discoveries in Neutrino Physics: Understanding Neutrino Oscillations 2-3 neutrino detectors with variable baseline 1500 ft nuclear reactor Determining.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Status of Neutrino Science Hitoshi Murayama LBNLnu April 11, 2003.
G. Sullivan - Princeton - Mar 2002 What Have We Learned from Super-K? –Before Super-K –SK-I ( ) Atmospheric Solar –SNO & SK-I Active solar –SK.
LNGS (GERmanium Detector Assembly Stefan Schönert MPIK Heidelberg NOW 2004, Sept. 12, 2004.
Neutrino Physics II David Schmitz Fermi National Accelerator Laboratory On behalf of the MINER A Collaboration CTEQ Summer School 2011 Madison, Wisconsin.
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Neutrino physics: experiments and infrastructure Anselmo Cervera Villanueva Université de Genève Orsay, 31/01/06.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutrino Physics - Lecture 2 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Reactor & Accelerator Thanks to Bob McKeown for many of the slides.
A LOOK INTO THE PHYSICS OF NEUTRINOS J A Grifols, UAB Viña del Mar, Dec 06.
8/5/2002Ulrich Heintz - Quarknet neutrino puzzles Ulrich Heintz Boston University
1 Neutrinos: Past, Present and Future Robert C. Webb Physics Department Texas A&M University Robert C. Webb Physics Department Texas A&M University.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
T2K experiment at J-PARC Epiphany 2010D. Kiełczewska1 For T2K Collaboration Danuta Kiełczewska Warsaw University & Sołtan Institute for Nuclear Studies.
NEUTRINO PROPERTIES J.Bouchez CEA-Saclay Eurisol town meeting Orsay, 13/5/2003.
The Importance of Low-Energy Solar Neutrino Experiments Thomas Bowles Los Alamos National Laboratory Markov Symposium Institute for Nuclear Research 5/13/05.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
1 V. Antonelli, G. Battistoni, P. Ferrario 1, S. Forte (Università degli Studi di Milano e I.N.F.N. Sezione di Milano and 1 University of Valencia) Standard.
The Elementary Particles. e−e− e−e− γγ u u γ d d The Basic Interactions of Particles g u, d W+W+ u d Z0Z0 ν ν Z0Z0 e−e− e−e− Z0Z0 e−e− νeνe W+W+ Electromagnetic.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Paul Soler University of Glasgow MICE as a Step towards Cool Muon Beams for Particle Physics MICE Celebration Event RAL, 25 June 2015.
0 Physics of Neutrinos From Boris Kayser, Fermilab.
Resolving neutrino parameter degeneracy 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam Sep. 30 and Oct , Univ.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
νeνe νeνe νeνe νeνe νeνe νeνe Distance (L/E) Probability ν e 1.0 ~1800 meters 3 MeV) Reactor Oscillation Experiment Basics Unoscillated flux observed.
Context: astroparticle physics, non-accelerator physics, low energy physics, natural sources physics, let’s-understand-the-Universe physics mainly looking.
The NOvA Experiment Ji Liu On behalf of the NOvA collaboration College of William and Mary APS April Meeting April 1, 2012.
Prospects in Neutrino Physics Prospects in Neutrino Physics J. Bernabeu U. Valencia and IFIC December 2007 December 2007.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
Monday, Feb. 19, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #7 Monday, Feb. 19, 2007 Dr. Jae Yu 1.Neutrino Oscillation Experiments 2.Long.
Long Baseline Neutrino Beams and Large Detectors Nicholas P. Samios Istanbul, Turkey October 27, 2008.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
Application of neutrino spectrometry
Karsten Heeger, LBNL TAUP03, September 7, 2003 Reactor Neutrino Measurement of  13 Karsten M. Heeger Lawrence Berkeley National Laboratory.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Masatoshi Koshiba Raymond Davis Jr. The Nobel Prize in Physics 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic.
Neutrinos: The Big Questions and How to Answer Them (and Others) Manfred Lindner Technical University Munich „Future Perspectives in High Energy Physics“
Search for Sterile Neutrino Oscillations with MiniBooNE
1 Neutrino Physics 2 Pedro Ochoa May 22 nd What about solar neutrinos and the solar neutrino problem? KamLAND uses the entire Japanese nuclear.
Karsten Heeger, LBNL INPAC, October 3, 2003 Reactor Neutrino Oscillation Experiments Karsten M. Heeger Lawrence Berkeley National Laboratory.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
Θ 13 and CP-Violation in the Lepton Sector SEESAW25 Institut Henri Poincaré, Paris Caren Hagner Universität Hamburg SEESAW25 Institut Henri Poincaré, Paris.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
Accelerator-based Long-Baseline Neutrino Oscillation Experiments Kam-Biu Luk University of California, Berkeley and Lawrence Berkeley National Laboratory.
1 Status of the T2K long baseline neutrino oscillation experiment Atsuko K. Ichikawa (Kyoto univeristy) For the T2K Collaboration.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
Solar Neutrino Results from SNO
Hiroyuki Sekiya ICHEP2012 Jul 5 The Hyper-Kamiokande Experiment -Neutrino Physics Potentials- ICHEP2012 July Hiroyuki Sekiya ICRR,
Neutrino physics: The future Gabriela Barenboim TAU04.
T2K Experiment Results & Prospects Alfons Weber University of Oxford & STFC/RAL For the T2K Collaboration.
1 A.Zalewska, Epiphany 2006 Introduction Agnieszka Zalewska Epiphany Conference on Neutrinos and Dark Matter, Epiphany Conference on Neutrinos.
Results in Neutrino Physics & Astrophysics : Highlights
Neutrinos and the Evolution
Solar Neutrino Problem
Anti-Neutrino Simulations
Neutrino Physics & Astrophysics : Overview
Search for Lepton-number Violating Processes
Low Energy Neutrino Astrophysics
Presentation transcript:

Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Content Neutrino sources Intrinsic properties oscillations masses and mixing parameter Neutrinos as probes from the Earth from astrophysical sources

Charge /3 -1/3 Why are neutrinos intresting ? Neutrinos undergo only weak interactions Neutrinos are neutral – intrinsic properties Neutrinos as probes – astrophysical applications Interactions w w,e w,e,s

Natural Neutrino Sources (experimentally verified) Sun (since 1970) Earth (since 2005) Supernovae (1987) Atmosphere (since ~1990)

Natural Neutrino Sources (not yet verified) Big Bang Active galactic nuclei Supernovae remnants ?, Gamma ray bursts ?, Supernovae relic neutrinos ?...

Energy Spectra of Astrophysical neutrinos thermal sources Non-thermal sources

Neutrinos (homemade) Nuclear Reactors (beta decays of fission products: e ) Accelerators pion production and subsequent decay in flight: 

Intrinsic Neutrino Properties Neutrino masses ? Neutrino mixing ? Dirac or Majorana particle ? CP violation ? Neutrino magnetic moment ? Neutrino oscillations observed, Missing mixing angle  13 Absolute masses and hierarchy ?

Survival probability: L in L osz Neutrino Oscillations

L ≈ 20 km L ≈ km atmospheric neutrinos: E v ~ GeV Oscillations and Atmospheric Neutrinos Pion production and subsequent decays (incl. muon)

Atmospheric Neutrinos and SuperKamiokande Charged current reactions  + N   + N` and e + N  e + N` 50 kt Water Cherenkov Detector

νμνμ νeνe Electron events Muon events Up goingUp going Neutrinos  e No-oscillation Oscillation

Result atmospheric Neutrino-Oscillations Best fit:  m 2 atm = 2.5×10 -3 eV 2 sin 2 2θ atm = 1.0 Best fit:  m 2 atm = 2.5×10 -3 eV 2 sin 2 2θ atm = 1.0 Confirmed by MACRO (Gran Sasso) Soudan (USA) K2K accelerator long baseline (250 km) experiment MINOS (USA) acc. exp. in 2006

Oscillations and Solar Neutrinos Neutrino Energy in MeV

The Solar Neutrino Problem Solar Model 0,5

Sudbury Neutrino Observatory SNO  charged current interaction (cc) e + D  p + p + e  neutral current interaction (nc) x + D  x + p + n  elastic Neutrino-Electron scattering (cc + nc) x + e  x + e 1kt Cherenkov Detector with heavy water

SNO Result Flavour transition discovered: 7 sigma ! Reasonable agreement with solar model Neutrinos from the Sun ( e ) transform into   or   

Solar Neutrino Oscillation Determination of  12 ~ 34 0 e  e   m 2 ~ 8 x eV 2 Confirmation by reactor experiment KamLAND

The solar matter effect – evidence by GALLEX/GNO GALLEX/GNO SNO Evidence for matter effect inside the Sun m 2 > m 1 Why are neutrino masses so small? GUT Leptogenesis Survival probability electron neutrino pp- 7Be 8B

Phys. Rev. Lett. 90 (2003) Evidence for Oscillation ILL 1979 Gösgen (1986) Chooz (1998) Reactor Experiments Bugey (1994)

KamLAND: Energy spectrum

θ sol θ 13, δ θ atm Parametrization Neutrino mixing Flavor Eigenstates Mass Eigenstates 2 mixing angles are measured:            CP violating phase  New experiments

 13 from reactors? P( e  e ) = 1 – cos 4  13 sin 2 2  12 sin 2 (  m 2 sol L/4E) – sin 2 2  13 sin2 (  m 2 atm L/4E) no CP terms no matter effects P L/E(km/MeV) solar atmospheric

Letter of Intent: Double- Chooz d~1.05 km P~8.4 GW 300mwe far detector no excavation for far detector Far Detector (~300mwe shielding) Near Detector for reactor monitoring

Double-CHOOZ (far) Detector Puit existant Gamma catcher: scintillator with no Gd 7 m BUFFER Mineral Oil 7 m Shielding steel and external vessel Target- Gd loaded scintillator: ~ 85 /d (far) and ~ /d (near) photomultipliers Inner veto

Sensitivity of Double Chooz Exclusion limit 90% cl for dm 2 = eV 2 and a final systematic uncertainty of 0.6%

732 km LNGS Neutrino beam from CERN to Gran Sasso

Precision Tracker (PT) Universität Hamburg: Detector 8.3kg Aktives Target: Blei- Emulsions-Ziegel = ca Tonnen Universit ät Münster

full mixing, 5 years 4.5 x10 19 pot / yearsignal (  m 2 = 1.9 x eV 2 ) signal (  m 2 = 2.4 x eV 2 ) signal (  m 2 = 3.0x eV 2 ) BKGDOPERA 1.8 kton fid. 6.6(10) 10.5(15.8) 16.4(24.6) 0.7(1.1) + brick finding + 3 prong decay 8.0(12.1) 12.8(19.2) 19.9(29.9) 1.0(1.5) Background reduction 8.0(12.1) 12.8(19.2) 19.9(29.9) 0.8(1.2) (…) with CNGS beam upgrade (X 1.5)  →  sensitivity  →  sensitivity

BOREXINO sees neutrinos from CERN (August 2006) !

Cosmic muons (background) Time of flight (CERN to LNGS) ~ 2.4 ms Data analysis of 30 h measurement and 55 t water as target

First neutrino events in BOREXINO

Θ 13 with accelerator physics with (anti-v) Neutrino appearance: θ 13, δ CP, Mass hierarchy  but degeneracy & correlation effects! Present limit from CHOOZ: sin 2 (2  13 ) < 0.2

Neutrino Superbeam Projects Japan: –T2K – phase I: 0.75MW (JPARC) + SuperK (22.5kt) (ab 2009) sin 2 2  13 >0.006 (90%) (5 Jahre) –T2K – phase II: 4 MW + HyperK ( kt) (≥ 2015) –T2K – phase II: 4 MW + HyperK ( kt) (≥ 2015) USA: NOvA: Fermilab NuMI beam (0.4 MW) + off-axis detector (surface!, 50kt) (ab 2009)

Sensitivity of future experiments on θ 13 90% CL from Huber, Lindner, Rolinec, Schwetz, Winter hep-ph/ ← reactor ← super beam

Absolute Neutrino Mass Measurements Kinematic tests (tritium decay) Search for the neutrinoless double- beta decay

Mainz Data (1998,1999,2001) Direct Mass Experiments: Tritium β-Decay E 0 = 18.6 keV

KATRIN ~70 m beamline, 40 s.c. solenoids The KArlsruhe TRItium Neutrino Experiment The KArlsruhe TRItium Neutrino Experiment Commissioning in 2008 m v < 0.2eV (90%CL)

Neutrinoless Double-Beta- Decay 0  :(A,Z)  (A,Z+2) + 2e - d d u u e-e- e-e- W-W- W-W- e e  L=2  Majorana nature, Mass scale, Majorana CP phases m ee = |  i U ei ² m i | Effective neutrino mass: Heidelberg-Moskau Collaboration, Eur.Phys.J. A12 (2001) 147 IGEX Collaboration, hep-ex/ , Phys. Rev. C59 (1999) 2108

H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorets, I.V. Krivosheina, NIM A, 2004 Peak at 2039 keV in the Heidelberg-Moscow experiment ! Effect or background ?? Evidence for neutrinoless Double-beta Decay ? Wanted: New experiments ! GERDA ( 76 Ge) Cuoricino ( 130 Te in cryogenic detectors) NEMO (different isotopes in large drift-chambers) COBRA ( 116 Cd) SNO+ ( 150 Nd) …and many more projects

Phase I: 20kg enriched (86%) 76 Ge, vgl. HDM Phase II: 35-40kg Phase III: ~500kg GERmanium Detector Array Method: HP Ge-diodes (enriched in 76 Ge) in cryogenic fluid shield (optional active). Q ββ = 2039 keV HP Ge-diodes (enriched in 76 Ge) in cryogenic fluid shield (optional active). Q ββ = 2039 keV

GERDA Sensitivity & Neutrino Mass | m ee | in eV Lightest neutrino (m 1 ) in eV F.Feruglio, A. Strumia, F. Vissani, NPB 659 H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorets, I.V. Krivosheina, NIM A, 2004 Phase I: Phase II: Phase III:

Neutrinos as Probes …from the Earth and from Astrophysical Objects

Geo-Neutrinos Direct neutrino observation: what is the contribution of radioactivity to the Earth‘s heat flow (~ 40 TW) ? direct test of the Bulk Silicate Earth model what is the energy source of the Earth magnetic field ? test of unorthodox models (i.e. breeder reactor in the core)

First detection in KamLAND Nature, 28. July 2005 Geo-neutrino energy spectrum reactors background Excess due to Geo-neutrinos

Future Neutrino Observatories Unsegmented 50 kt liquid scintillator LENA HyperKamiokande (1 Mt Water Cherenkov) …Liquid Argon ~100 kt TPC

LAGUNA Large Aparatus for Grand Unification and Neutrino Astronomy European initiative (France, Germany, Italy, Switzerland, UK, Poland, Finland) Aim: Design studies for all 3 kinds of detevtors (water Ch, scintillator, liquid argon) until ~ 2010

Physics goals of future Neutrino Observatories Gravitational collapse Star formation rate in the early universe Thermonuclear fusion reactions Baryon number violation (Proton decay) Leptonic CP – violation Geophysics Indirect search for Dark Matter Active Galactic Nuclei – UHE Neutrinos

One example for LENA: Detection of the Diffuse Supernova Neutrino Background (DSNB) ? up to now only limits flux and spectral shape depend on Star formation rate Gravitational collapse model

Star formation rate Star formation: Large uncertainties Optical and infrared observations LENA: 70 until 120 events in 10 years 1 < z < 2: around 25% Pulse shape analysis: distinction between models of supernova mechanism

Extremely Large Observatories Km 3 Cherenkov detector in the mediterranian sea Km 3 Cherenkov detector at the South Pole (Ice Cube)

Amanda Frejus E ν  E -3.8 A change in the slope would indicate a non-atmospheric component Atmospheric neutrino Waxmann-Bahcall limit: Model-independent upper bound = 2  = combined Diffusive sources Limits from Amanda Ice-Cube ~

Conclusions New results recently Neutrino masses and mixing established Physics beyond the standard model New window to astrophysical observations