Deutscher Wetterdienst 1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting 07.-11.09.2009, Offenbach Michael Baldauf Deutscher Wetterdienst,

Slides:



Advertisements
Similar presentations
School of something FACULTY OF OTHER School of Computing An Adaptive Numerical Method for Multi- Scale Problems Arising in Phase-field Modelling Peter.
Advertisements

2ª aula Evolution Equation. The Finite Volume Method.
Creating AEW diagnostics. As seen in case studies and composites, AEWs are characterized by a ‘wavelike’ perturbation to the mid-tropospheric wind field.
COSMO Workpackage No First Results on Verification of LMK Test Runs Basing on SYNOP Data Lenz, Claus-Jürgen; Damrath, Ulrich
(c) MSc Module MTMW14 : Numerical modelling of atmospheres and oceans Staggered schemes 3.1 Staggered time schemes.
Günther Zängl, DWD1 Improvements for idealized simulations with the COSMO model Günther Zängl Deutscher Wetterdienst, Offenbach, Germany.
Krakow - September, 15th 2008COSMO WG 2 - Runge Kutta1 Further Developments of the Runge-Kutta Time Integration Scheme Investigation of Convergence (task.
ICONAM ICOsahedral Non-hydrostatic Atmospheric Model -
Improvement of the Semi-Lagrangian advection by ‘selective filling diffusion (SFD)' WG2-meeting COSMO-GM, Moscow, Michael Baldauf (FE13)
Lucio Torrisi WG2-COSMO GM, Bucharest 2006 Recents Improvements in LMZ Code Lucio TORRISI CNMCA – Pratica di Mare (Rome)
For the Lesson: Eta Characteristics, Biases, and Usage December 1998 ETA-32 MODEL CHARACTERISTICS.
Nesting. Eta Model Hybrid and Eta Coordinates ground MSL ground Pressure domain Sigma domain  = 0  = 1  = 1 Ptop  = 0.
Finite Differences Finite Difference Approximations  Simple geophysical partial differential equations  Finite differences - definitions  Finite-difference.
M. Baldauf, DWD Numerical contributions to the Priority Project ‘Runge-Kutta’ COSMO General Meeting, Working Group 2 (Numerics) Bukarest,
Zängl ICON The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling Günther Zängl and the ICON.
Development of WRF-CMAQ Interface Processor (WCIP)
– Equations / variables – Vertical coordinate – Terrain representation – Grid staggering – Time integration scheme – Advection scheme – Boundary conditions.
Aktionsprogramm 2003 AP 2003: LMK Properties of the dynamical core and the metric terms of the 3D turbulence in LMK COSMO- General Meeting.
19 December ConclusionsResultsMethodologyBackground Chip HelmsSensitivity of CM1 to Initial θ' Magnitude and Radius Examining the Sensitivity of.
Introducing the Lokal-Modell LME at the German Weather Service Jan-Peter Schulz Deutscher Wetterdienst 27 th EWGLAM and 12 th SRNWP Meeting 2005.
C M C C Centro Euro-Mediterraneo per i Cambiamenti Climatici COSMO General Meeting - September 8th, 2009 COSMO WG 2 - CDC 1 An implicit solver based on.
– Equations / variables – Vertical coordinate – Terrain representation – Grid staggering – Time integration scheme – Advection scheme – Boundary conditions.
Comparison of convective boundary layer velocity spectra calculated from large eddy simulation and WRF model data Jeremy A. Gibbs and Evgeni Fedorovich.
COSMO General Meeting, Offenbach, 7 – 11 Sept Dependance of bias on initial time of forecasts 1 WG1 Overview
Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Rome Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany.
M. Baldauf (DWD)1 SMC-meeting, Bologna, 05/06. Feb with verification extensions for SMC-teleconf., 16. April 2014 Michael Baldauf (FE13) Proposed.
The revised Diagnostics of 2m Values - Motivation, Method and Impact - M. Raschendorfer, FE14 Matthias Raschendorfer DWD COSMO Cracow 2008.
Status of the Support Activities WG 6: Reference Version and Implementation WG Coordinator: Ulrich Schättler.
Deutscher Wetterdienst 1FE 13 – Linear solutions of flow over mountains COSMO General Meeting WG2 'Numerics and Dynamics' Michael.
Sensitivity experiments with the Runge Kutta time integration scheme Lucio TORRISI CNMCA – Pratica di Mare (Rome)
24-28 Sept. 2012Baldauf, Reinert, Zängl (DWD)1 Michael Baldauf, Daniel Reinert, Günther Zängl (DWD, Germany) PDEs on the sphere, Cambridge, Sept.
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Deutscher Wetterdienst 1FE 13 – An Improved Third Order Vertical Advection Scheme for the Runge-Kutta Dynamical Core Michael Baldauf (DWD) Bill.
M. Baldauf, U. Blahak (DWD)1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting Sept. 2013, Sibiu M. Baldauf, U. Blahak (DWD)
Status of the COSMO-Software and Documentation WG 6: Reference Version and Implementation WG Coordinator: Ulrich Schättler.
Deutscher Wetterdienst Fuzzy and standard verification for COSMO-EU and COSMO-DE Ulrich Damrath (with contributions by Ulrich Pflüger) COSMO GM Rome 2011.
Matthias Raschendorfer DWD Recent extensions of the COSMO TKE scheme related to the interaction with non turbulent scales COSMO Offenbach 2009 Matthias.
10-13 Sept. 2012M. Baldauf (DWD)1 Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany Priority Project "Conservative Dynamical Core" Final report.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Status of the COSMO-1 configuration at MeteoSwiss Guy.
1 Priority Project CDC Task 2: The compressible approach COSMO-GM, , Moscow Pier Luigi Vitagliano (CIRA), Michael Baldauf (DWD)
Bogdan Rosa 1, Marcin Kurowski 1 and Michał Ziemiański 1 1. Institute of Meteorology and Water Management (IMGW), Warsaw Podleśna, 61
10 th COSMO General Meeting, Krakow, September 2008 Recent work on pressure bias problem Lucio TORRISI Italian Met. Service CNMCA – Pratica di Mare.
Requirements of High Accuracy Computing 1) Adopted numerical scheme must resolve all physical time and length scales. 2) Numerical scheme must be neutrally.
Standardized Test Set for Nonhydrostatic Dynamical Cores of NWP Models
Mass Coordinate WRF Dynamical Core - Eulerian geometric height coordinate (z) core (in framework, parallel, tested in idealized, NWP applications) - Eulerian.
1 Reformulation of the LM fast- waves equation part including a radiative upper boundary condition Almut Gassmann and Hans-Joachim Herzog (Meteorological.
Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz Tuning the horizontal diffusion in the COSMO model.
COSMO-DE, M. Baldauf Stability considerations of advection schemes and Improvements of Semi-Lagrange advection for the Runge-Kutta dynamical.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Component testing of the COSMO model’s turbulent diffusion.
COSMO General Meeting 2008, Krakow Modifications to the COSMO-Model Cumulus Parameterisation Scheme (Tiedtke 1989): Implementation and Testing Dimitrii.
Status Report WG2 J. Steppeler, DWD Zurich Z-Coordinate Runge Kutta and Semi-Lagrangian methods Direct implicit solvers Courant number independent.
Deutscher Wetterdienst 1FE 13 – Working group 2: Dynamics and Numerics report ‘Oct – Sept. 2008’ COSMO General Meeting, Krakau
Performance of a Semi-Implicit, Semi-Lagrangian Dynamical Core for High Resolution NWP over Complex Terrain L.Bonaventura D.Cesari.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Status of the COSMO-1 configuration at MeteoSwiss Guy.
Time Integration Schemes Bill Skamarock NCAR/MMM 1.Canonical equations for scheme analyses. 2.Time-integration schemes used in NWP models.
A revised formulation of the COSMO surface-to-atmosphere transfer scheme Matthias Raschendorfer COSMO Offenbach 2009 Matthias Raschendorfer.
Poster Presentation COSMO General Meeting 2009.
Introducing the Lokal-Modell LME at the German Weather Service
Operational COSMO of MeteoSwiss
QPF sensitivity to Runge-Kutta and Leapfrog core
Conservative Dynamical Core (CDC)
Tuning the horizontal diffusion in the COSMO model
Improving computational stability with time-splitting of vertical advection considering 3-dimensional CFL condition Kohei Kawano1, Kohei Aranami1, Tabito.
Retuning the turbulent gust component in the COSMO model
Bucharest 2006 J. Steppeler (DWD)
Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany
Bogdan Rosa1, Marcin Kurowski1, Damian Wójcik1,
COSMO implementations at CNMCA: tests with different dinamycal options
Bucharest 2006 J. Steppeler (DWD)
Conservative Dynamical Core (CDC)
Presentation transcript:

Deutscher Wetterdienst 1 Status report of WG2 - Numerics and Dynamics COSMO General Meeting , Offenbach Michael Baldauf Deutscher Wetterdienst, Offenbach, Germany

Deutscher Wetterdienst 2 Discretization of the metric terms in the fast-wave-solver Problem: In some cases, tests indicated a markedly different evolution of the pressure field when switching from the sigma coordinate to the Gal-Chen coordinate Obviously, this should not be the case… G. Zängl, DWD

Deutscher Wetterdienst 3 Sea-level pressure (hPa), UTC + 72 h Sigma coordinateGal-Chen coordinate

Deutscher Wetterdienst 4 Discretization of the metric terms in the fast-wave-solver Solution: The metric terms of the pressure gradient and the horizontal divergence need to be discretized such that vertical derivatives are 2nd order even for non- equidistant model levels 1.Bilinear interpolation to half-levels 2.Computation of vertical derivatives on main levels using interpolated values on adjacent half-levels

Deutscher Wetterdienst 5 Sea-level pressure (hPa), UTC + 72 h Sigma coordinateGal-Chen coordinate The improved discretization of the metric terms removes the spurious dependence of the pressure evolution on the vertical coordinate

11 th COSMO General Meeting, Offenbach, 7-10 September km RK4.9/LF comparison In COSMO 4.9 a more accurate discretization of the metric terms was introduced by G. Zaengl. L. Torrisi, CNMCA

Deutscher Wetterdienst 7 Impact of lower boundary condition for w Available schemes: Currently: Upwind-biased differences combined with Runge-Kutta iterations (as for horizontal advection); horizontal wind speed is taken at the lowest model level New proposal: Diagnostic computation using centered differences; horizontal wind speed is linearly extrapolated to the surface G. Zängl, DWD

Deutscher Wetterdienst 8

9

10 Impact of lower boundary condition for w Conclusions: The lower boundary condition for vertical wind has a notable systematic impact on the pressure bias While 2nd and 4th order centered differences yield similar results, the upwind-RK discretizations produce systematically lower pressure, particularly for 5th order Main reason: extrapolation of horizontal wind speed to the surface for centered-difference schemes

Deutscher Wetterdienst 11FE 13 – Motivation: in a convection-permitting model (like COSMO-DE) the vertical advection plays a much bigger role than in a convection-parameterising model  try to achieve higher accuracy in the vertical advection of dynamic variables ( u,v,w,T',p' ), too COSMO-model up to now: vertically implicit centered diff. 2nd order WRF: vertically explicit upwind scheme (3rd order) advantages: Fits best to the explicit horizontal advection and the Runge-Kutta-scheme Relatively easy to implement disadvantages: Limitation of Courant number: C x + C y + C z < 1.4 (Baldauf, 2008, JCP)  WRF uses smaller time steps (~15 sec for dx=3km) WRF uses a vertical ‘velocity brake’  Keep the vertically implicit scheme, but try a higher order of approximation (COSMO priority project 'Runge-Kutta', Task 8) An Improved Third Order Vertical Advection Scheme for the Runge-Kutta Dynamical Core M. Baldauf (DWD), W. C. Skamarock (NCAR)

Deutscher Wetterdienst 12FE 13 – CN2, C z =2.4 Test _a CN2, C z =2.0CN2, C z =1.6 CN2, C z =0.5 C x = 0.5 C z The current 3-stage RK-scheme in the COSMO-model

Deutscher Wetterdienst 13 New proposal: Complete operator splitting and 3rd order implicit scheme C z =2.4 C z =0.5

Deutscher Wetterdienst 14 Real case study: COSMO-DE (2.8 km resolution) for the ‚ ‘, 0 UTC run 1h-precipitation sum at 14 UTC Old VANew VA Diff. ‚New - Old VA‘

Deutscher Wetterdienst 15 Real case study: COSMO-DE (2.8 km resolution) for the ‚ ‘, 0 UTC run 1h-precipitation sum at 15 UTC Old VANew VA Diff. ‚New - Old VA‘

Deutscher Wetterdienst 16FE 13 – Summary The current implicit vertical advection scheme possess a relatively strong damping and is formally not unconditionally stable. From all of the tested alternatives only the 'complete operator splitting' (= vertical advection outside of the RK-scheme) with CN3 or CN3Crow has proven to be superior: improved advection properties in idealized advection tests unconditionally stable in C z works also in combination with fast waves plausible results in idealized and real cases computational amount is only slightly increased runs stable for several COSMO-DE (2.8 km) simulations (summer period); but: L. Torrisi (CNMCA): unstable case with a 7 km resolution one unstable COSMO-DE run Outlook inspection of unstable cases; winter time cases Synoptic verification of a longer COSMO-DE period (August 2008)

Deutscher Wetterdienst 17 Runge-Kutta for COSMO-EU (7 km) at DWD several problems occured: shear instability  solved by small artificial diffusion instability in tracer advection  solved by Semi-Lagrange advection unsolved: smaller precipitation rates and smoother precipitation fields than in current COSMO-EU ('bug' or 'feature'?) has to be inspected further on side problem: checkerboard pattern in convective precipitation ...

Deutscher Wetterdienst 18 'checkerboard' is quite robust: it also occurs in 24h-precipitation sums (  A. Seifert) and is independent from the model initialisation time In the Leapfrog-scheme it does not occur or only rather weak (influence on the total precipitation amount is quite weak) , 0 UTC + 18 h Checkerboard pattern in convective precipitation M. Baldauf, A. Seifert (DWD) COSMO-EU test suite

Deutscher Wetterdienst 19 frequency for call of Tiedtke-scheme: nincconv= , 0 UTC + 15 h , 0 UTC + 18 h

Deutscher Wetterdienst 20 frequency for call of Tiedtke-scheme: nincconv= , 0 UTC + 15 h , 0 UTC + 18 h

Deutscher Wetterdienst 21 Up to now nincconv=10: COSMO-EU with Leapfrog (dt=40 sec)  call cu_tied every 6 min 40 sec. COSMO-EU with RK (dt=66 sec)  call cu_tied every 11 min A call every 11 min. is obviously not sufficient for the temporal development of convection  New (since in the parallel routine): nincconv=4  call cu_tied every 4 min 24 sec. Computing amount (fraction of convection scheme at total comput. time) nincconv=10: 2% nincconv=4: 5.5% (~turbulence) nincconv=1: 20%

22 Tuning the horizontal diffusion | COSMO General Meeting Offenbach, 7 September 2009 Marie Müllner, Guy de Morsier Results (i) CFL case Reference: COSMO-7 72h forecast RK irunge_kutta=1 SL advection Only HDIFF at lateral and upper boundaries with: hd_corr_bd_u/t/p=0.75 HDIFF with: hd_corr_in_u=0.65 hd_corr_in_t/p/q=0 Similar peak with..._u=0.55 All other choices of …_u:.75,.45,.35,.25,.15,.05 have no peaks. M. Müllner, G. de Morsier, MeteoCH

23 Tuning the horizontal diffusion | COSMO General Meeting Offenbach, 7 September 2009 Marie Müllner, Guy de Morsier Summary and Recommendations Experiments and kinetic energy spectra suggest a choice for the diffusion coefficients of the wind inside the domain as: 0.15 for COSMO-2 and 0.25 for COSMO-7 The other variables (temperature, pressure, moisture) should not be diffused in the inner domain At the boundary the wind, temperature and the pressure should be diffused to get the same forcing Outlook: More detailed verification results of the test suite (specially precipitation) and second period (2 winter weeks).

Deutscher Wetterdienst 24 Stable integration of the Coriolis terms in the Runge-Kutta dynamical core l_coriolis_every_RK_substep=.TRUE. (not a Namelist-Param.!) (M. Baldauf, DWD) Further Work: DFG-Priority Program ‘Metström’ 2 nd program phase (=years 3+4) Project ‘Adaptive numerics for multi-scale flow’ will be further maintained

Deutscher Wetterdienst 25 WG2-Publications in 2008/09: E. Avgoustoglou, I. Papageorgiou (2008): Evaluation of Precipitation Forecast for the COSMO Model in Reference to Z vs. Terrain Following Coordinates Version, COSMO-Newsl. 9, M. Baldauf (2008): A linear solution for flow over mountains and its comparison with the COSMO model, COSMO-Newsl. 9, M. Baldauf (2008): Stability analysis for linear discretisations of the advection equation with Runge-Kutta time integration, J. Comput. Phys., 227,