Micromegas for a DHCAL LAPP, Annecy Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espagilière.

Slides:



Advertisements
Similar presentations
Julie Prast, DHCAL Meeting, 24 janvier 2008 La carte DIF pour DHCAL (proto au m 2 et au m 3 ) Sebastien Cap, Julie Prast ( LAPP) Christophe Combaret (IPNL)
Advertisements

Status of DHCAL Slice Test Data Analysis Lei Xia ANL-HEP All results preliminary.
Micromegas studies using cosmic rays Franck Sabatié May 7th 2009 Saclay cosmic ray bench Data acquisition system and analysis tools MIP detection Position.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Simulation of the DHCAL Prototype Lei Xia Argonne National Laboratory American Linear Collider Workshop: Ithaca, NY, July , 2003 Fe absorber Glass.
Thursday, November 7th ECFA meeting - Valencia - A.-M. Magnan 1 CALICE Summary of 2006 testbeam for the ECAL Anne-Marie MAGNAN Imperial College London.
CALICE meeting Prague 2007, Hervé MATHEZ 1 DHCAL PCB STUDY for RPC and MicroMegas (Electronics recent developments for the European DHCAL) William TROMEUR,
Sept. 24, Status of GEM DHCAL Jae Yu For GEM-TGEM/DHCAL Group Sept. 24, 2010 CALICE Collaboration Meeting Univ. Hassan II, Casablanca Introduction.
1 Status of GEM DHCAL Andy White For GEM-TGEM/DHCAL Group March 21, 2011 ALCPG11 Workshop Univ. of Oregon Introduction 30cmx30cm 2D readout with KPiX chip.
AHCAL electronics. Status and Outlook Peter Göttlicher for the AHCAL developers CALICE meeting UT Arlington, March 11th, 2010.
08/10/2007Julie Prast, LAPP, Annecy1 The DHCAL DIF and the DIF Task Force Julie Prast, LAPP, Annecy.
RPC detection rate capability ≈ 1/ρ Float-Glass ( Ω-cm) RPC rate capability < Bakelite( Ω-cm) one. New kind of doped glass was developed.
Catherine Adloff16 June 2009 CALICE Technical Board 1 DHCAL-MICROMEGAS Yannis KARYOTAKIS For the LAPP group.
M. Chefdeville LAPP, Annecy, France. Introduction  Motivations for a Digital hadronic calorimeter Count hits instead of measuring energy deposits Reduce.
J. Prast, G. Vouters, Arlington, March 2010 DHCAL DIF Status Julie Prast, Guillaume Vouters 1. Future CCC Use in DHCAL Setup 2. Calice DAQ Firmware Implementation.
LAPP/Demokritos H4 setup Sampling Calorimetry with Resistive Anode Micromegas (SCREAM) Theodoros Geralis NCSR Demokritos RD51 mini week, 8 – 11 December.
Activités R&D du groupe LC Détecteur au LAPP R. GAGLIONE pour C. ADLOFF 7 Décembre 2011.
The DHCAL Data Analysis José Repond CALICE Meeting, Prague, September 10 – 12, 2007.
UTA GEM DHCAL Simulation Jae Yu * UTA DoE Site Visit Nov. 13, 2003 (*On behalf of the UTA team; A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee,
1 MICROMEGAS for Imaging Hadronic Calorimetry at Linear Colliders Catherine ADLOFF on behalf of the CALICE collaboration.
Update on the Triple GEM Detectors for Muon Tomography K. Gnanvo, M. Hohlmann, L. Grasso, A. Quintero Florida Institute of Technology, Melbourne, FL.
PNPI, R&D MUCH related activity ● Segmentation ● Simulation of the neutral background influence ● R&D of the detectors for MUCH ● Preparation to the beam.
Resistive protections Rui de Oliveira 09/12/15
Towards a 1m 3 Glass RPC HCAL prototype with multi-threshold readout M. Vander Donckt for the CALICE - SDHCAL group.
ILC Calorimetry Test Beam Status Lei Xia ANL HEP.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
EUDET Meeting, Munich – October 18, Ongoing activities at Saclay David Attié D. Burke; P. Colas; E. Delagnes; A. Giganon; Y. Giomataris;
MicroMegas for DHCAL Status and activities at LAPP Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise.
SiD Hcal structure & 1m² Micromegas chamber prototype CALICE 2009 – LYON – 2009, septembre 17 th.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
European DHCAL development European DHCAL development CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY Status :
The Prototype Simulation of SDHCAL Ran.Han Gerald.Grenier Muriel.Donckt IPNL.
Julie Prast, Calice Electronics Meeting at LAL, June 2008 Status of the DHCAL DIF Detector InterFace Board Sébastien Cap, Julie Prast, Guillaume Vouters.
1 Status of the MICROMEGAS semi-digital HCAL M. Chefdeville, LAPP LC Detector group, Annecy CALICE meeting, CERN, 21/05/2011.
Status of GEM DHCAL Jae Yu For GEM DHCAL Group April 25, 2012 KILC Workshop, KNU Introduction KPiX V9 and DCAL Integration FTBF Beam Test Setup Beam Test.
14th january 2010 Actual Micromegas USB DAQ ASU and DIF
Status of the MICROMEGAS semi-DHCAL M. Chefdeville LAPP, Annecy, France LCWS, 27 th March 2010, Beijing 1.
Catherine Adloff28 Jan 2008 SiD Collaboration Meeting 1 DHCAL and MICROMEGAS at LAPP Catherine Adloff Franck Cadoux Sébastien Cap Cyril Drancourt Ambroise.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
Energy Reconstruction in the CALICE Fe-AHCal in Analog and Digital Mode Fe-AHCal testbeam CERN 2007 Coralie Neubüser CALICE Collaboration meeting Argonne,
W Prototype Simulations Linear Collider Physics & Detector Meeting December 15, 2009 Christian Grefe CERN, Bonn University.
SDHCAL. outline  SDHCAL concept, validation and construction  Test Beam and technological prototype performance  Perspectives and Conclusion  SDHCAL.
1 Micromegas for sampling calorimetry Chronology & people  Initiated by LAPP LC-group in 2006 (C. Adloff, M. Chefdeville, Y. Karyotakis, I. Koletsou)
LAPP Introduction Catherine ADLOFF for Yannis KARYOTAKIS.
News from the 1m 2 GRPC SDHCAL collection of slides from : Ch.Combaret, I.L, H.Mathez, J.Prast, N.Seguin, W.Tromeur, G.Vouters and many others.
SHIP calorimeters at test beam I. KorolkoFebruary 2016.
Development of Resistive Micromegas for Sampling Calorimetry Sampling Calorimetry with Resistive Anode Micromegas (SCREAM) Theodoros Geralis NCSR Demokritos.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
CALICE, Shinshu, March Update on Micromegas TB analysis Linear Collider group, LAPP, Annecy CALICE collaboration meeting 5-7 March 2012, Shinshu,
Physics performance of a DHCAL with various absorber materials Jan BLAHA CALICE Meeting, 16 – 18 Sep. 2009, Lyon, France.
Proto micromegas au LAPP 14 november 2008The DHCAL Board for the m2 and m3 prototype1 ASU DIF Inter DIF terminaison FPC USB Test Vendredi dernier….
Analysis of LumiCal data from the 2010 testbeam
Thick-GEM sampling element for DHCAL: First beam tests & more
Test Beam Request for the Semi-Digital Hadronic Calorimeter
The European DHCAL status
M. Chefdeville LAPP, Annecy RD51/WG2, CERN, 29/04/2009
The 1m2 Micromegas prototype for hadronic calorimetry
CEPC 数字强子量能器读出电子学预研进展
R&D advances on Micromegas for a semi-DHCAL
DHCAL and MICROMEGAS at LAPP
Activités du groupe LC Détecteur au LAPP
Hadronic Shower Structure in WHCAL Prototype
Status of the DHCAL DIF Detector InterFace Board
Status of GEM DHCAL Andy White RD51 Collaboration Meeting CERN
Tao Hu, Jianbei Liu, Haijun Yang, Boxiang Yu For the CEPC-Calo Group
MicroMegas DHCAL : Résultat des tests en faisceau et simulation
Status of the MICROMEGAS semi-digital HCAL
The DHCAL DIF Board For the M2 Prototype
STATUS OF SKIROC and ECAL FE PCB
AIMS 1- Build SDHCAL prototype of 1m3 as close as possible to the one
Presentation transcript:

Micromegas for a DHCAL LAPP, Annecy Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espagilière Renaud Gaglione Raphael Gallet Nicolas Geffroy Claude Girard Jean Jacquemier Yannis Karyotakis Fabrice Peltier Julie Prast Jean Tassan Guillaume Vouters 1

Outline 2 Micromegas R&D for DHCAL X-ray and beam tests with Analog Readout Micromegas with Digital Readout Simulation Future1 m² prototype Conclusion

Micromegas detectors at LAPP 3 Description: Gas mix: Argon+Isobutane Drift and Mesh HV < 500 V High rate capability Robust, cheap (industrial process) Thickness: 3.2 mm Low hit multiplicity High detection efficiency Delicate functioning: sparks Readout: Analog for characterisation GASSIPLEX + CENTAURE DAQ Digital : HARDROC or DIRAC + Detector InterFace (DIF) board + EUDET DAQ2 or CrossDAQ or pads

Detector layout 4 Bulk Micromegas : Mesh laminated on the PCB Industrial process Cheap and robust Steel top : Part of the absorber Holes for X-ray tests Holds a 55 µm thick cathode Glued on a plastic frame 3 mm above mesh Bulk technology from R. De Oliveira & O. Pizzirusso

55 Fe X-ray test 5 Setup 6 x 16 cm2 mesh Source collimated above 1 pad Readout mesh signals Collection efficiency Plateau for field ratios larger than 50 Gas gain (assume 230 primary e-) Gain doubles every 20 V Decreases with pressure Max around Energy resolution at 5.9 keV 17 % FWHM Slope yields -2 fC/mbar ADC Counts Pressure (mbar)

Beam test setup 6 Trigger: 3 scintillators 3 Micromegas 6x16 pads 1 Micromegas 12x32 pads Steel absorber option GASSIPLEX readout VME modules (ADC) + CENTAURE C characterisation of the prototypes efficiency and multiplicity response uniformity X-talk studies behaviour in hadronic shower Aug & Nov 2008 at CERN PS and SPS Pions and Muons of 200 GeV Pions with 1 steel block + absorbers Pions of 7 GeV 6 T9 line at PS-CERN (Nov. 2008)

Signal distribution on each pad 7 Select event with one and only one hit in each chamber Insure all charge collected on one pad Hit if ADC > 27 counts Landau distribution MPV is at 45 fC Shows variations of 10% RMS over all pads platinum events MPV ~ 45 fC entries all triggers ADC counts Chamber 0 Chamber 1 Chamber 2 Chamber 3

Efficiency and multiplicity 8 Require one and only one safe hit in three chambers ADC > 51 counts (5.3 fC) Hit position in fourth chamber extrapolated Count hit (ADC > 27 counts) in 3x3 pad area Efficiency between 92 and 99 % Multiplicity between 1.07 and 1.15 Efficiency map of one chamber gold events Hit multiplicity distributions of 2 chambers

Micromegas with Digital readout 9 PCB with DIRAC1 64 channels ASIC (R. Gaglione, IPNL) Digital link to DAQ (possibility to chain detectors) 3 thresholds and 2 gains (RPC and Micromegas modes) Synchronous architecture First operational Bulk Micromegas with embedded readout electronics ! 9 DIRAC Sparks protectionsmask for bulk laying8x8 pads with bulk Bulk from R. De Oliveira & O. Pizzirusso

Micromegas with digital readout 10 Tested during August 2008 test beam Minimum threshold of 19 fC Only one detector available No efficiency/multiplicity measurements yet Prepare more prototype for next beam test Beam Profile when moving the X-Y table

Micromegas with digital readout 11 PCB with 4 HARDROC1 64 channels ASIC, detector active area 8x32 cm 2 11 sparks protections HARDROC1 bulk

Micromegas with digital readout 12 Readout : DIF board Separated from the SLAB For large number of ASICs HARDROC, DIRAC and also SPIROC and SKYROC DIF task force interface : USB or EUDET DAQ Tested during the November 2008 TB Excellent work from Guillaume Vouters (DIF) and Christophe Combaret (CrossDaQ) HV stability issues during tests Data (almost) under study PCB with ASICs

Simulation 13 Tools SLIC full simulation (Geant 4) ‏ Analysis using JAS beam test setup DHCAL with Micromegas Comparison between analog, digital and semi-digital Thresholds & absorber studies

beam test setup is being simulated Comparison with real data Better understanding of our detector Preparation for next test beam 30 cm iron absorber in front Simulation Test beam

DHCAL with Micromegas 15 Full 1 m² geometry implemented Readout: from 0.5 x 0.5 cm2 to 4x4 cm² pads 3 mm drift gap Gas mix. Argon/Isob. 95/5 1.9 cm thick absorber between layers different absorber materials 40 or 80 layers (~4, 5 or ~9 λ ) Thickness of active layer: 3.2 mm Ideal Micromegas, digitization not yet fully implemented DHCAL 40 planes 100 GeV Pions

16 Sum up hits and energy in all cells Apply a single threshold (1 MIP) Look at distributions RMS E(GeV) Nb of Hits 1 MIP threshold Pions Nb of Hits Nb of events Nb of Hits Nb of events Analog response at 10 GeV Digital response at 10 GeV 1 MIP threshold

Energy resolution 17 Hit threshold Threshold (MIP) σ E /E Pion energy E (GeV) σ E /E Threshold range with constant energy resolution Worse resolution at High energy  Need more than 1 threshold ? A lot more is under study …

Future 1 m² prototype: 6 Active Sensor Units channels - 96 x 96 cm² active area - 3 DIF + interDIF boards

1 m 2 prototype status 19 DIF & DAQ almost ready ASU : 24 HARDROC2 Design and routing done Single ASU test box under conception Mechanical prototype under construction

Conclusion 20 Micromegas R&D for DHCAL very active! ASIC developments Innovative prototypes, first digital readout prototypes Tests Beam: very promising results (still a lot to analyze) Beam tests planned in 2009, first in May Next steps 1 m 2 prototype should be ready for test before 2010 Calorimeter prototype of 1 m 3 In parallel : work on simulation TB prototypes, future 1 m 3 and leakage less 8 m 3 Different absorber material, active medium, pads size…

Thanks for your attention Acknowledgements Catherine Adloff Jan Blaha Sébastien Cap Alexandre Dalmaz Cyril Drancourt Ambroise Espagilière Renaud Gaglione Raphael Gallet Nicolas Geffroy Claude Girard Jean Jacquemier Yannis Karyotakis Fabrice Peltier Julie Prast Jean Tassan Guillaume Vouters