1 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Methodologically, in developing a regression specification.

Slides:



Advertisements
Similar presentations
EXPECTED VALUE RULES 1. This sequence states the rules for manipulating expected values. First, the additive rule. The expected value of the sum of two.
Advertisements

THE ERROR CORRECTION MODEL 1 The error correction model is a variant of the partial adjustment model. As with the partial adjustment model, we assume a.
1 This very short sequence presents an important definition, that of the independence of two random variables. Two random variables X and Y are said to.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.
1 THE DISTURBANCE TERM IN LOGARITHMIC MODELS Thus far, nothing has been said about the disturbance term in nonlinear regression models.
1 XX X1X1 XX X Random variable X with unknown population mean  X function of X probability density Sample of n observations X 1, X 2,..., X n : potential.
1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: dynamic model specification Original citation: Dougherty, C. (2012)
1 THE NORMAL DISTRIBUTION In the analysis so far, we have discussed the mean and the variance of a distribution of a random variable, but we have not said.
HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS 1 Heteroscedasticity causes OLS standard errors to be biased is finite samples. However it can be demonstrated.
1 PROBABILITY DISTRIBUTION EXAMPLE: X IS THE SUM OF TWO DICE red This sequence provides an example of a discrete random variable. Suppose that you.
1 The graphical approach appears to have served the time series analysts satisfactorily, but on the whole econometricians prefer more formal methods and.
MEASUREMENT ERROR 1 In this sequence we will investigate the consequences of measurement errors in the variables in a regression model. To keep the analysis.
1 ASSUMPTIONS FOR MODEL C: REGRESSIONS WITH TIME SERIES DATA Assumptions C.1, C.3, C.4, C.5, and C.8, and the consequences of their violations are the.
00  sd  0 –sd  0 –1.96sd  0 +sd 2.5% CONFIDENCE INTERVALS probability density function of X null hypothesis H 0 :  =  0 In the sequence.
EXPECTED VALUE OF A RANDOM VARIABLE 1 The expected value of a random variable, also known as its population mean, is the weighted average of its possible.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: variable misspecification iii: consequences for diagnostics Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
1 In the previous sequence, we were performing what are described as two-sided t tests. These are appropriate when we have no information about the alternative.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 5) Slideshow: Chow test Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
1 In a second variation, we shall consider the model shown above. x is the rate of growth of productivity, assumed to be exogenous. w is now hypothesized.
1 UNBIASEDNESS AND EFFICIENCY Much of the analysis in this course will be concerned with three properties of estimators: unbiasedness, efficiency, and.
FIXED EFFECTS REGRESSIONS: WITHIN-GROUPS METHOD The two main approaches to the fitting of models using panel data are known, for reasons that will be explained.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
1 CONTINUOUS RANDOM VARIABLES A discrete random variable is one that can take only a finite set of values. The sum of the numbers when two dice are thrown.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: Friedman Original citation: Dougherty, C. (2012) EC220 - Introduction.
Confidence intervals were treated at length in the Review chapter and their application to regression analysis presents no problems. We will not repeat.
CONSEQUENCES OF AUTOCORRELATION
ALTERNATIVE EXPRESSION FOR POPULATION VARIANCE 1 This sequence derives an alternative expression for the population variance of a random variable. It provides.
CONFLICTS BETWEEN UNBIASEDNESS AND MINIMUM VARIANCE
1 PROXY VARIABLES Suppose that a variable Y is hypothesized to depend on a set of explanatory variables X 2,..., X k as shown above, and suppose that for.
MULTIPLE RESTRICTIONS AND ZERO RESTRICTIONS
F TEST OF GOODNESS OF FIT FOR THE WHOLE EQUATION 1 This sequence describes two F tests of goodness of fit in a multiple regression model. The first relates.
MULTIPLE REGRESSION WITH TWO EXPLANATORY VARIABLES: EXAMPLE 1 This sequence provides a geometrical interpretation of a multiple regression model with two.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
TYPE II ERROR AND THE POWER OF A TEST A Type I error occurs when the null hypothesis is rejected when it is in fact true. A Type II error occurs when the.
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
. reg LGEARN S WEIGHT85 Source | SS df MS Number of obs = F( 2, 537) = Model |
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
1 Y SIMPLE REGRESSION MODEL Suppose that a variable Y is a linear function of another variable X, with unknown parameters  1 and  2 that we wish to estimate.
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
Definition of, the expected value of a function of X : 1 EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE To find the expected value of a function of.
RAMSEY’S RESET TEST OF FUNCTIONAL MISSPECIFICATION 1 Ramsey’s RESET test of functional misspecification is intended to provide a simple indicator of evidence.
4 In our case, the starting point should be the model with all the lagged variables. DYNAMIC MODEL SPECIFICATION General model with lagged variables Static.
INSTRUMENTAL VARIABLES 1 Suppose that you have a model in which Y is determined by X but you have reason to believe that Assumption B.7 is invalid and.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
SEMILOGARITHMIC MODELS 1 This sequence introduces the semilogarithmic model and shows how it may be applied to an earnings function. The dependent variable.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
1 REPARAMETERIZATION OF A MODEL AND t TEST OF A LINEAR RESTRICTION Linear restrictions can also be tested using a t test. This involves the reparameterization.
F TESTS RELATING TO GROUPS OF EXPLANATORY VARIABLES 1 We now come to more general F tests of goodness of fit. This is a test of the joint explanatory power.
1 We will illustrate the heteroscedasticity theory with a Monte Carlo simulation. HETEROSCEDASTICITY: MONTE CARLO ILLUSTRATION 1 standard deviation of.
WHITE TEST FOR HETEROSCEDASTICITY 1 The White test for heteroscedasticity looks for evidence of an association between the variance of the disturbance.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
VARIABLE MISSPECIFICATION II: INCLUSION OF AN IRRELEVANT VARIABLE In this sequence we will investigate the consequences of including an irrelevant variable.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
FOOTNOTE: THE COCHRANE–ORCUTT ITERATIVE PROCESS 1 We saw in the previous sequence that AR(1) autocorrelation could be eliminated by a simple manipulation.
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Introduction to Econometrics, 5th edition
Presentation transcript:

1 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Methodologically, in developing a regression specification that survives the tests to which it is subjected, we have followed what is described as a specific-to-general procedure for model selection, and it is open to serious criticism. DYNAMIC MODEL SPECIFICATION

2 General model with lagged variables Static model AR(1) model Model with lagged dependent variable If you start with a poorly specified model, in our case the static model, the various diagnostic test statistics are likely to be invalidated. Thus there is a risk that the model may survive the tests and appear to be satisfactory, even though it is misspecified. DYNAMIC MODEL SPECIFICATION

3 General model with lagged variables Static model AR(1) model Model with lagged dependent variable To avoid this danger, you should in principle adopt a general-to-specific approach. You should start with a model that is sufficiently general to avoid potential problems of underspecification, and then see if you can legitimately simplify it. DYNAMIC MODEL SPECIFICATION

4 General model with lagged variables Static model AR(1) model Model with lagged dependent variable In our case, the starting point should be the model with all the lagged variables. DYNAMIC MODEL SPECIFICATION

5 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Having fitted it, we might be able to simplify it to the static model, if the lagged variables individually and as a group do not have significant explanatory power. DYNAMIC MODEL SPECIFICATION

6 General model with lagged variables Static model AR(1) model Model with lagged dependent variable If the lagged variables do have significant explanatory power, we could perform a common factor test and see if we could simplify the model to an AR(1) specification. DYNAMIC MODEL SPECIFICATION

7 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Sometimes we may find that a model with a lagged dependent variable is an adequate dynamic specification, if the other lagged variables lack significant explanatory power. DYNAMIC MODEL SPECIFICATION

8 General model with lagged variables Static model AR(1) model Model with lagged dependent variable In the case of the housing regression, we have done exactly the opposite. We started with a crude static model. DYNAMIC MODEL SPECIFICATION

9 General model with lagged variables Static model AR(1) model Model with lagged dependent variable We switched to an AR(1) specification. DYNAMIC MODEL SPECIFICATION

10 General model with lagged variables Static model AR(1) model Model with lagged dependent variable We turned to the more general model when the common factor test revealed that the AR(1) specification was inadequate. DYNAMIC MODEL SPECIFICATION

11 General model with lagged variables Static model AR(1) model Model with lagged dependent variable Finally we ended up with a model with a lagged dependent variable, perhaps a little lucky to do so. DYNAMIC MODEL SPECIFICATION

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 12.5 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course 20 Elements of Econometrics