Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.

Slides:



Advertisements
Similar presentations
NUCP 2371 Radiation Measurements II
Advertisements

X-Ray & γ-Ray Interactions with Matter
Gamma-Ray Spectra _ + The photomultiplier records the (UV) light emitted during electronic recombination in the scintillator. Therefore, the spectrum collected.
NE Introduction to Nuclear Science Spring 2012
Physics of Radiography
Medical Imaging Dr. Hugh Blanton ENTC 4390.
Physics of Radiotherapy Lecture II: Interaction of Ionizing Radiation With Matter.
Charged Particle Radiation
RFSS: Lecture 9 Nuclear Reactions
10-1 CHEM 312 Lecture 10: Part 1 Radiation Reactions: Dosimetry and Hot Atom Chemistry Readings: §Reading: Modern Nuclear Chemistry, Chap. 17; Nuclear.
BME 560 Medical Imaging: X-ray, CT, and Nuclear Methods
Dose. Energy Gained Particles lose energy in matter. Eventually energy loss is due to ionization. An important measure is the amount of energy gained.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Counting Cosmic Rays through the passage of matter By Edwin Antillon.
Interactions with Matter
Particle Interactions
Interaction of radiation with matter - 3
Radiation Dosimetry Dose Calculations D, LET & H can frequently be obtained reliably by calculations: Alpha & low – Energy Beta Emitters Distributed in.
ACADs (08-006) Covered Keywords Roentgen, gray, exposure rates, absorbed dose, dose equivalent, quality factors, linear energy transfer, relative biological.
Radiology is concerned with the application of radiation to the human body for diagnostically and therapeutically purposes. This requires an understanding.
At the position d max of maximum energy loss of radiation, the number of secondary ionizations products peaks which in turn maximizes the dose at that.
Physics of Radiography Interaction with matter. By the end of the first part of the session you should be able to: 1.Understand what can happen as x-ray.
6. Atomic and Nuclear Physics Chapter 6.6 Nuclear Physics.
Interaction of Gamma-Rays - General Considerations uncharged transfer of energy creation of fast electrons.
1 Photon Interactions  When a photon beam enters matter, it undergoes an interaction at random and is removed from the beam.
Stopping Power The linear stopping power S for charged particles in a given absorber is simply defined as the differential energy loss for that particle.
Interactions with Matter
Centre de Toulouse Radiation interaction with matter 1.
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
Interactions of Radiation With Matter
Resident Physics Lectures
Lecture 1.3: Interaction of Radiation with Matter
Space Instrumentation. Definition How do we measure these particles? h p+p+ e-e- Device Signal Source.
Department of Physics University of Oslo
Physics Modern Lab1 Electromagnetic interactions Energy loss due to collisions –An important fact: electron mass = 511 keV /c2, proton mass = 940.
1 Dosimetry part 1: X-ray interactions with matter G.Haddadi, PhD, MSc Associated prof. of Medical Physics Fassa University of Medical Sciences.
Radiation and radiation dosimetry Spring 2006 Introduction Audun Sanderud Department of Physics University of Oslo.
Neutrons (Basic Concepts).  It is desirable to classify neutrons according to their kinetic energy into:
Alpha and Beta Interactions
1 dE/dx  Let’s next turn our attention to how charged particles lose energy in matter  To start with we’ll consider only heavy charged particles like.
Interactions of radiation with Matter
© Jimoid.com 2005 Ionising Radiation There are two types of radiation; ionising and non-ionising. Radiation Ionising Non-ionising Indirectly ionising (neutral.
Monday, Oct. 16, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #11 Monday, Oct. 16, 2006 Dr. Jae Yu 1.Energy Deposition in Media Total Electron.
Gamma ray interaction with matter A) Primary interactions 1) Coherent scattering (Rayleigh scattering) 2) Incoherent scattering (Compton scattering) 3)
Chapter 5 Interactions of Ionizing Radiation. Ionization The process by which a neutral atom acquires a positive or a negative charge Directly ionizing.
Determining Radiation Intensity
Attenuation As x-rays pays through matter, the exit beam will contain less photons than the entrance beam. This reduction in the quantity of photons is.
Particle Detectors for Colliders Robert S. Orr University of Toronto.
Interaction Ionizing Radiation with Matter BNEN Intro William D’haeseleer BNEN - Nuclear Energy Intro W. D'haeseleer
Basic photon interactions
INTERACTIONS OF RADIATION WITH MATTER. twCshttp:// twCs
Radiation Protection and Safety 3/12/ Interactions with Electrons   Energy-loss Mechanisms Electrons and positrons have similar stopping powers.
Interaction of x-ray photons (and gamma ray photons) with matter.
Interactions of Ionizing Radiation
Lecture 5. Particle Properties of Waves (cont’d)
Interaction of Radiation with Matter
Chapter 2 Radiation Interactions with Matter East China Institute of Technology School of Nuclear Engineering and Technology LIU Yi-Bao Wang Ling.
Wednesday, Mar. 2, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #11 Wednesday, Mar. 2, 2005 Dr. Jae Yu 1.Energy Deposition in Media Photon energy.
PHYS 3446 – Lecture #13 Energy Deposition in Media
INTERACTION OF PARTICLES WITH MATTER
Chapter 5 Interactions of Ionizing Radiation
Dose Equivilant Rad Pro III NUCP 2331.
Interactions of Radiation With Matter
Interaction of Ionizing Radiation with Matter
Outside the nucleus, the beta decay {image} will not occur because the neutron and electron have more total mass than the proton. This process can occur.
Interaction of gamma rays with matter
Chapter 5 - Interactions of Ionizing Radiation
PHYS 3446 – Lecture #14 Wednesday,March 7, 2012 Dr. Brandt
PHYS 3446, Spring 2012 Andrew Brandt
PHYS 3446 – Lecture #13 Energy Deposition in Media
Presentation transcript:

Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The goal is to maximize the dose at the tumor location while minimizing the exposure of the surrounding body tissue. Radiation therapy can be performed by using external radiation sources (charged particle exposure by accelerator beams, neutron exposure by reactor beams - EXTERNAL BEAM THERAPY) or by using internal radiation sources (long-lived radioactive sources in close vicinity of the tumor - BRACHYTHERAPY).

Both approaches (EXTERNAL BEAM THERAPY and BRACHYTHERAPY) require careful treatment planning since the radiation therapy is technically difficult and potentially dangerous. The most important parameters for treatment planning and dose calculations are: energy loss of radiation energy loss of radiation stopping power of radiation (LET) stopping power of radiation (LET) range and scatter of radiation range and scatter of radiation dose and isodose of radiation dose and isodose of radiation

These parameters need to be carefully studied for planning the radiation treatment to maximize the damage for the tumor while minimizing the potential damage to the normal body tissue. An insufficient amount of radiation dose does not kill the tumor, while too much of a dose may produce serious complications in the normal tissue, may in fact be carcinerous. These parameters need to be carefully studied for planning the radiation treatment to maximize the damage for the tumor while minimizing the potential damage to the normal body tissue. An insufficient amount of radiation dose does not kill the tumor, while too much of a dose may produce serious complications in the normal tissue, may in fact be carcinerous. The energy loss of the radiation defines the " linear energy transfer“ (LET see section on biological effects of radiation) and therefore the absorbed dose D. The solid line indicates the probability for destroying the tumor cells as a function of dose. The dashed line corresponds to the probability of causing cancer as a function of dose. A reduction of dose from 50 Gy to 45 Gy (5% reduction) lowers the chances of cure significantly from 65% to 15%. On the other hand an increase of dose by 5% to 60 Gy may kill all the cancer cells but increases the risk of complications from 10% to 80%.

ENERGY LOSS OF PARTICLE RADIATION IN MATTER Energy loss and dose are correlated with each other and help to formulate the interaction of internal and external radiation with matter to predict the affectivity of the radiation treatment and the possible damage to adjacent body tissue. Radiation treatment is based on different kind of radiation and depends on the different kind of interaction between the radiation and matter (body tissue).

interaction by collision with nuclei in material (short range forces) interaction by collision with nuclei in material (short range forces) 1. Light charged particles (electrons) excitation and ionization of atoms in absorber material (atomic effects) excitation and ionization of atoms in absorber material (atomic effects) interaction with electrons in material (collision, scatter) interaction with electrons in material (collision, scatter) deceleration by Coulomb interaction (Bremsstrahlung) deceleration by Coulomb interaction (Bremsstrahlung) 2. Heavy charged particles (Z>1) excitation and ionization of atoms in absorber material (atomic effects) excitation and ionization of atoms in absorber material (atomic effects) Coulomb interaction with nuclei in material (collision, scatter) Coulomb interaction with nuclei in material (collision, scatter) (long range forces) (long range forces) 3. Neutron radiation

Each interaction process leads to a certain amount of energy loss, since a fraction of the kinetic energy of the incoming particle is transferred to the body material by scattering, excitation, ionization or radiation loss. The interaction between radiation particles and absorber material determines the energy loss of the particles and therefore the range of the particles in the absorber material. The sum over all energy loss events along the trajectory of the particle yields the total energy loss.

Electrons are light mass particles, electrons are therefore scattered easily in all directions due to their interactions with the atomic electrons of the absorber material. This results into more energy loss per scattering event.

The multiple scattering results in a very limited spatial resolution of the electron beam within the absorber material. The energy loss of the electrons is dominated by excitation and ionization effects (dE/dx) exc and by bremsstrahlung losses (dE/dx) rad, the energy loss components depend sensitively on the charge number Z and the average ionization potential I  11.5  Z [eV] of the absorber material, the number density N, the relativistic velocity of the electrons v (  = v/c ) with mass m 0.

First term is proportional to Z: Second term is proportional to Z 2 and energy E: The ratio between these two components depends on the energy of the electron beam E and the charge Z of the absorber material.

EXAMPLE for Pb with Z=82, for E  8.5 MeV radiative losses dominate.

Because of the strong interaction with the absorber material, electrons experience immediate energy loss and the intensity drops rapidly. This limits the range R(E) of the electron beam in the material:

Body tissue is typically low Z material and the range can be approximated by a simple expression: EXAMPLE The range of 100 keV and 1.0 MeV electrons in muscle tissue is 1.33  g/cm 2 and g/cm 2, respectively. and

For heavy ions the electron loss is described by the Bethe formula in terms of the number density N and charge number Z of the absorber material and the charge number z, mass m 0, and velocity v of the projectiles. the average ionization potential is I  11.5  Z [eV]. The energy loss is used to calculate the stopping power for the projectiles in the material and their range. The stopping power is defined as the energy loss per distance: or as energy loss per distance and number density (or density):

The stopping power is proportional to Z 2, it increases rapidly at low energies, reaches a maximum and decreases gradually with increasing energy.

The stopping power allows to calculate the range of the heavy particles in the absorber material. (Note, heavy particles are less scattered than electrons due to their heavy masses and the beam shows significantly better spatial resolution.)

Because of the specific energy dependence of the energy loss (or stopping power curve) incoming high energy particles experience only little energy loss dE/dx, but the energy loss maximizes when particles have slowed down to energies which correspond with the peak of the energy loss curve. The energy of the particles (with an initial energy E i ) at a certain depth d can be derived by: The position d max of maximum energy loss can be directly calculated from the initial energy and the stopping power of the projectiles in the absorber material. for protons the energy loss maximizes at energies around E ( d )  100 keV, for  -particles around 1 MeV.

Due to interaction with the body material the projectiles scatter and the beam widens as a function of depth. This effect is called angle straggling.

The angle straggling is more pronounced for electron beams due to the large momentum transfer. For beam particles (single charge) with momentum p and velocity v, angle straggling in a target with number density N and charge number Z over a thickness d is described by: with e as elementary charge. Because of the substantially smaller mass of electrons the angle straggling range is significantly larger than for protons and heavier particles. Angle straggling results in an increase of the bombarded area with depth. It defines the isodose profile during the radiation procedure.

INTERACTION OF  -RAYS WITH MATTER Energy loss effects for  and X-ray radiation are characterized by photo effect photo effect Compton scattering Compton scattering pair production pair production Photons interact with matter by photo absorption which causes excitation or ionization of atoms. Only photons of well defined energies corresponding to the excitation energies in the atoms are absorbed for excitation processes.

The probability for photoelectric absorption  determines the attenuation of the  -radiation due to photoeffect: with n  4.5 depending on the photon energy E  and Z the charge number of the absorber material. As higher Z as better the absorption probability. The photo effect dominates at low energies.

The Compton scattering represents scattering of photons of energy  = h  ; with electrons in the absorber material. This causes the photon to be deflected from its original path by a certain angle  and to transfer part of its energy to the electron recoil. The new photon energy is described by: with a maximum energy transfer of

The probability for the scattering per unit distance is the attenuation coefficient  which can be expressed in terms of the charge number Z of the material, the number density N, and the Compton collision cross section per atom  C : The attenuation coefficient is directly proportional to the charge number Z.

The third absorption (attenuation) process is pair production and takes place at energies E   MeV. While interacting with the Coulomb field of a nucleus or electron, the energy of the photon is converted to the formation of an electron positron pair.

The probability for pair production is expressed in terms of the attenuation coefficient k, with  = r 0 2 /137 (r 0 is the electron radius) and the function P which depends on the photon energy. The attenuation coefficient for pair production is basically proportional to Z 2.

The total attenuation coefficient  depends on the photon energy E and the charge number Z of the absorber material:

The total attenuation coefficient effects the intensity loss of the photons in an absorber of thickness t as discussed before.

The attenuation coefficient is closely related to the energy transfer and energy absorption coefficient for  - and X-ray radiation in materials. The energy transfer coefficient  tr /  in a material of density  is defined by: taking into account the energy losses  (the average emitted fluorescence energy) and E avg (average kinetic energy of the electron recoils) and 2mc 2 (rest energy of the electron positron pair).

The energy absorption coefficient  en /  describes the energy losses to Bremsstrahlung and is expressed by, with g as a function of photon energy and mass number.

The energy loss of a monoenergetic photon beam of initial flux  0 (photons/m 2 ) is: The energy loss dE/dx for a monoenergetic beam E  = h  is therefore proportional to the transfer and absorption coefficients for For high initial energies the coefficients are large which translates into a maximum of energy loss at smaller depths which decreases gradually with the decrease of the absorption coefficient towards lower energies.