The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

CIRCLES.
< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Operations on Functions
Solving Quadratic Equations.
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
PAR TIAL FRAC TION + DECOMPOSITION. Let’s add the two fractions below. We need a common denominator: In this section we are going to learn how to take.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
SETS A = {1, 3, 2, 5} n(A) = | A | = 4 Sets use “curly” brackets The number of elements in Set A is 4 Sets are denoted by Capital letters 3 is an element.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
INVERSE FUNCTIONS.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
When trying to figure out the graphs of polar equations we can convert them to rectangular equations particularly if we recognize the graph in rectangular.
Properties of Logarithms
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
A polynomial function is a function of the form: All of these coefficients are real numbers n must be a positive integer Remember integers are … –2, -1,
VECTORS.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
This presentation was found at We made some minor formatting changes on slides because of overlapping material, and added this slide.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
Separable Differential Equations. A separable differential equation can be expressed as the product of a function of x and a function of y. Example: Multiply.
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
TRIGONOMETRIC IDENTITIES
10-7 (r, ).
Polynomial Functions.
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
(r, ).
Absolute Value.
Graphing Techniques: Transformations Transformations Transformations
Polynomial Functions.
INVERSE FUNCTIONS.
CIRCLES.
INVERSE FUNCTIONS Chapter 1.5 page 120.
Polynomial Functions.
CIRCLES.
Solving Quadratic Equations.
INVERSE FUNCTIONS.
Symmetric about the y axis
Symmetric about the y axis
Rana karan dev sing.
Presentation transcript:

The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t have either the x or y terms squared. Parabolas have only the x term was squared (or only the y term, but NOT both). r is the radius of the circle so if we take the square root of the right hand side, we'll know how big the radius is.

Let's look at the equation The center of the circle is at the origin and the radius is 3. Let's graph this circle. This is r 2 so r = Center at (0, 0) Count out 3 in all directions since that is the radius

If the center of the circle is NOT at the origin then the equation for the standard form of a circle looks like this: The center of the circle is at (h, k). The center of the circle is at (h, k) which is (3,1). Find the center and radius and graph this circle. The radius is 4 This is r 2 so r =

If you take the equation of a circle in standard form for example: You can find the center and radius easily. The center is at (-2, 4) and the radius is 2. Remember center is at (h, k) with (x - h) and (y - k) since the x is plus something and not minus, (x + 2) can be written as (x - (-2)) This is r 2 so r = 2 (x - (-2)) But what if it was not in standard form but multiplied out (FOILED) Moving everything to one side in descending order and combining like terms we'd have:

If we'd have started with it like this, we'd have to complete the square on both the x's and y's to get in standard form. Group x terms and a place to complete the square Group y terms and a place to complete the square Move constant to the other side 4416 Write factored and wahlah! back in standard form. Complete the square

Now let's work some examples: Find an equation of the circle with center at (0, 0) and radius 7. Let's sub in center and radius values in the standard form 00 7

Find an equation of the circle with center at (0, 0) that passes through the point (-1, -4). The point (-1, -4) is on the circle so should work when we plug it in the equation: Since the center is at (0, 0) we'll have Subbing this in for r 2 we have:

Find an equation of the circle with center at (-2, 5) and radius 6 Subbing in the values in standard form we have: -256

Find an equation of the circle with center at (8, 2) and passes through the point (8, 0). Subbing in the center values in standard form we have: 82 Since it passes through the point (8, 0) we can plug this point in for x and y to find r 2.

Identify the center and radius and sketch the graph: To get in standard form we don't want coefficients on the squared terms so let's divide everything by 9. So the center is at (0, 0) and the radius is 8/ Remember to square root this to get the radius

Identify the center and radius and sketch the graph: Remember the center values end up being the opposite sign of what is with the x and y and the right hand side is the radius squared. So the center is at (-4, 3) and the radius is

We have to complete the square on both the x's and y's to get in standard form. Group x terms and a place to complete the square Group y terms and a place to complete the square Move constant to the other side 9944 Write factored for standard form. Find the center and radius of the circle: So the center is at (-3, 2) and the radius is 4.

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. Shawna has kindly given permission for this resource to be downloaded from and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar