Introduction to Public Key Cryptography

Slides:



Advertisements
Similar presentations
Public Key Cryptography Nick Feamster CS 6262 Spring 2009.
Advertisements

Cryptography and Network Security Chapter 9
Public Key Algorithms …….. RAIT M. Chatterjee.
Dr. Lo’ai Tawalbeh Summer 2007 Chapter 9 – Public Key Cryptography and RSA Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Chapter 9. Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively.
Public Key Cryptography and the RSA Algorithm
Cryptography1 CPSC 3730 Cryptography Chapter 9 Public Key Cryptography and RSA.
CSCE 790: Computer Network Security Chin-Tser Huang University of South Carolina.
Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications.
Dr.Saleem Al_Zoubi1 Cryptography and Network Security Third Edition by William Stallings Public Key Cryptography and RSA.
1 Pertemuan 08 Public Key Cryptography Matakuliah: H0242 / Keamanan Jaringan Tahun: 2006 Versi: 1.
Public Key Cryptography RSA Diffie Hellman Key Management Based on slides by Dr. Lawrie Brown of the Australian Defence Force Academy, University College,
Cryptography and Network Security Chapter 9 5th Edition by William Stallings Lecture slides by Lawrie Brown.
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
“RSA”. RSA  by Rivest, Shamir & Adleman of MIT in 1977  best known & widely used public-key scheme  RSA is a block cipher, plain & cipher text are.
Asymmetric encryption. Asymmetric encryption, often called "public key" encryption, allows Alice to send Bob an encrypted message without a shared secret.
Public Key Model 8. Cryptography part 2.
 Introduction  Requirements for RSA  Ingredients for RSA  RSA Algorithm  RSA Example  Problems on RSA.
Prime Numbers Prime numbers only have divisors of 1 and self
Cryptography A little number theory Public/private key cryptography –Based on slides of William Stallings and Lawrie Brown.
Public Key Cryptography and the RSA Algorithm Cryptography and Network Security by William Stallings Lecture slides by Lawrie Brown Edited by Dick Steflik.
Applied Cryptography (Public Key) RSA. Public Key Cryptography Every Egyptian received two names, which were known respectively as the true name and the.
Information Security Principles & Applications
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Network Security Lecture 17 Presented by: Dr. Munam Ali Shah.
BASIC CRYPTOGRAPHIC CONCEPTS. Public Key Cryptography  Uses two keys for every simplex logical communication link.  Public key  Private key  The use.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Public Key Cryptography and RSA” Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 11/9/2009 INCS 741: Cryptography 11/9/20091Dr. Monther.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Public-Key Encryption
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
1 Public-Key Cryptography and Message Authentication.
Computer and Network Security Rabie A. Ramadan Lecture 6.
Cryptography and Network Security Chapter 9 - Public-Key Cryptography
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
PUBLIC-KEY CRYPTOGRAPH IT 352 : Lecture 2- part3 Najwa AlGhamdi, MSc – 2012 /1433.
PUBLIC KEY CRYPTOGRAPHY ALGORITHM Concept and Example 1IT352 | Network Security |Najwa AlGhamdi.
Cryptography and Network Security Public Key Cryptography and RSA.
Network Security Lecture 18 Presented by: Dr. Munam Ali Shah.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Chapter 3 – Public Key Cryptography and RSA (A). Private-Key Cryptography traditional private/secret/single-key cryptography uses one key shared by both.
Scott CH Huang COM 5336 Cryptography Lecture 6 Public Key Cryptography & RSA Scott CH Huang COM 5336 Cryptography Lecture 6.
Chapter 9 Public Key Cryptography and RSA. Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender.
Fall 2002CS 395: Computer Security1 Chapter 9: Public Key Cryptography.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Key Management Network Systems Security Mort Anvari.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
By Marwan Al-Namari & Hafezah Ben Othman Author: William Stallings College of Computer Science at Al-Qunfudah Umm Al-Qura University, KSA, Makkah 1.
Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively as the true name and the good name, or the.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CIM PKI011 Public-key Encryption and Hash Functions Cryptography and Network Security Third Edition by William Stallings Modified from lecture slides.
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Lecture 5 Asymmetric Cryptography. Private-Key Cryptography Traditional private/secret/single key cryptography uses one key Shared by both sender and.
CS480 Cryptography and Information Security
Visit for more Learning Resources
Lecture 5 RSA DR. Nermin Hamza.
G. Pullaiah College of Engineering and Technology
Public Key Cryptography and the RSA Algorithm
The RSA Algorithm JooSeok Song Tue.
Private-Key Cryptography
ICS 353: Design and Analysis of Algorithms
The RSA Algorithm JooSeok Song Tue.
NET 311 Information Security
Chapter -5 PUBLIC-KEY CRYPTOGRAPHY AND RSA
Presentation transcript:

Introduction to Public Key Cryptography Lecture 4 CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography Outline Public Key Encryption Public Key Cryptographic System Public Key vs. Symmetric Key Digital Signatures Digital Envelope CPSC415 Biometrics and Cryptography

Insufficiencies with Symmetric Encryption Symmetric encryption is not enough to address two key issues key distribution – how to have secure communications in general without having to trust a KDC with your key? digital signatures – how to verify that a received message really comes from the claimed sender? CPSC415 Biometrics and Cryptography

Advent of Asymmetric Encryption Probably most significant advance in the 3000 year history of cryptography Use two keys: a public key and a private key Asymmetric since parties are not equal Clever application of number theory concepts instead of merely substitution and permutation CPSC415 Biometrics and Cryptography

How Asymmetric Encryption Works Asymmetric encryption uses two keys that are related to each other a public key, which may be known to anybody, is used to encrypt messages, and verify signatures a private key, known only to the owner, is used to decrypt messages encrypted by the matching public key, and create signatures the key used to encrypt messages or verify signatures cannot decrypt messages or create signatures CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography Public key Encryption Alice has a key pair: public and private publish the public key such that the key is publicly known Alice keeps the private key secret Other people use Alice’s public key to encrypt messages for Alice Alice uses her private key to decrypt Only Alice can decrypt since only Alice has the private key Public key Message Encrypt rfwekfs Private key Message Decrypt rfwekfs Trick: To compute the private key from the public key is a difficult problem. CPSC415 Biometrics and Cryptography

Asymmetric Encryption for Confidentiality Bob Alice CPSC415 Biometrics and Cryptography

Asymmetric Encryption for Authentication Bob Alice CPSC415 Biometrics and Cryptography

Applications for Asymmetric Encryption Three categories Encryption/decryption: sender encrypts a message with receiver’s public key Digital signature: sender “signs” a message with its private key Key exchange: two sides exchange a session key CPSC415 Biometrics and Cryptography

Security of Asymmetric Encryption Like symmetric schemes brute-force exhaustive search attack is always theoretically possible, but keys used are too large (>512bits) Not more secure than symmetric encryption, dependent on size of key Security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems Generally the hard problem is known, just made too hard to do in practice Require using very large numbers, so is slow compared to symmetric schemes CPSC415 Biometrics and Cryptography

Public key Cryptographic System cryptanalysis M private key Eve M M C encryption decryption Alice Alice’s public key private key Public key directory C = EPK(M) M = DSK(C) = DSK(EPK(M)) Public keys are published. Each private key is known to the receiver only. Difficult for Eve to find out SK from PK. CPSC415 Biometrics and Cryptography

Public key vs. Symmetric key Two parties MUST trust each other Two parties DO NOT need to trust each other Both share same key Two separate keys: a public and a private key (or one key is computable from the other) Typically faster Typically slower Examples: DES, IDEA, RC5, CAST, AES, … Examples: RSA, ElGamal Encryption, ECC… CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography Digital signatures Is there a functional equivalent to a handwritten signature? Easy for legitimate user to sign But hard for anyone else to forge Easy for anyone to verify Dependent on message & signer (key) Public key! Sign: “invert” function using private key Verify: compute function using public key CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography Digital signatures Private key Sign Message rfwekfs (fixed-length signature) Public key Message Verify Valid/Invalid rfwekfs Only the signer (who has a private key) can generate a valid signature Everyone (since the corresponding public key is published) can verify if a signature with respect to a message is valid CPSC415 Biometrics and Cryptography

Digital Envelopes -- Symmetric + Asymmetric Generate a secret key (session key) at random. Encrypt the message using the session key and symmetric algorithm. Encrypt the session key with the recipient’s public key. This becomes the “digital envelope”. Send the encrypted message and the digital envelope to the recipient. Figure … CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography Digital Envelopes Session Key Session Key Cipher Plain Cipher Plain Digital Envelope Digital Envelope Session Key Recipient’s Public key Session Key CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography RSA CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography Motivation Revision One problem with symmetric key algorithms is that the sender needs a secure method of telling the receiver the key. Plus, you need a separate key for everyone you might communicate with. Public key algorithms use a public-key and private-key pair to tackle key management problem. Each receiver has a public key pair. The public key is publicly known (published). A sender uses the receiver’s public key to encrypt a message. Only the receiver can decrypt it with the corresponding private key. CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography RSA Invented by Rivest, Shamir & Adleman of MIT in 1977 Best known and widely used public-key scheme Based on exponentiation in a finite (Galois) field over integers modulo a prime exponentiation takes O((log n)3) operations (easy) Use large integers (e.g. 1024 bits) Security due to cost of factoring large numbers factorization takes O(e log n log log n) operations (hard) CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography RSA Key Setup Each user generates a public/private key pair by select two large primes at random: p, q compute their system modulus n=p·q note ø(n)=(p-1)(q-1) select at random the encryption key e where 1<e<ø(n), gcd(e,ø(n))=1 solve following equation to find decryption key d e·d=1 mod ø(n) and 0≤d≤n publish their public encryption key: KU= {e,n} keep secret private decryption key: KR= {d,n} CPSC415 Biometrics and Cryptography

CPSC415 Biometrics and Cryptography RSA Usage To encrypt a message M: sender obtains public key of receiver KU={e,n} computes: C=Me mod n, where 0≤M<n To decrypt the ciphertext C: receiver uses its private key KR={d,n} computes: M=Cd mod n Message M must be smaller than the modulus n (cut into blocks if needed) CPSC415 Biometrics and Cryptography

RSA Example: Computing Keys Select primes: p=17, q=11 Compute n=pq=17×11=187 Compute ø(n)=(p–1)(q-1)=16×10=160 Select e: gcd(e,160)=1 and e<160 choose e=7 Determine d: de=1 mod 160 and d<160 d=23 since 23×7=161=10×160+1 Publish public key KU={7,187} Keep secret private key KR={23,187} CPSC415 Biometrics and Cryptography

RSA Example: Encryption and Decryption Given message M = 88 (88<187) Encryption KU={7,187} : C = 887 mod 187 = 11 Decryption KR={23,187} : M = 1123 mod 187 = 88 CPSC415 Biometrics and Cryptography