5.2 Logarithmic Functions & Their Graphs

Slides:



Advertisements
Similar presentations
Graphs of Exponential and Logarithmic Functions
Advertisements

Logarithmic Equations Unknown Exponents Unknown Number Solving Logarithmic Equations Natural Logarithms.
Pre-Calc Lesson 5-5 Logarithms
Bell work Find the value to make the sentence true. NO CALCULATOR!!
Logarithmic Functions
Exponential/ Logarithmic
4.2 Logarithmic Functions
1) log416 = 2 is the logarithmic form of 4░ = 16
Definition of a Logarithmic Function For x > 0 and b > 0, b≠ 1, y = log b x is equivalent to b y = x The function f (x) = log b x is the logarithmic function.
Exponential and Logarithmic Functions Logarithmic Functions EXPONENTIAL AND LOGARITHMIC FUNCTIONS Objectives Graph logarithmic functions. Evaluate.
Exponential and Logarithmic Functions and Equations
Lesson 5-5 Logarithms. Logarithmic functions The inverse of the exponential function.
Objectives & Vocabulary
6. 3 Logarithmic Functions Objectives: Write equivalent forms for exponential and logarithmic equations. Use the definitions of exponential and logarithmic.
Logarithms Logs ARE EXPONENTS!! Logarithms are a way to rewrite exponential equations. They help us solve equations as well.
Logarithms.
Logarithmic Functions. Logarithm = Exponent Very simply, a logarithm is an exponent of ten that will produce the desired number. Y = Log 100 means what.
STUDENTS WILL BE ABLE TO: CONVERT BETWEEN EXPONENT AND LOG FORMS SOLVE LOG EQUATIONS OF FORM LOG B Y=X FOR B, Y, AND X LOGARITHMIC FUNCTIONS.
Logarithmic Functions Section 8.4. WHAT YOU WILL LEARN: 1.How to evaluate logarithmic functions.
Log a x y. Recognize and evaluate logarithmic functions with base a Graph logarithmic functions Recognize, evaluate, and graph natural logarithmic functions.
5.5 Logarithmic Functions Objective To Define and apply logarithms.
Inverse functions & Logarithms P.4. Vocabulary One-to-One Function: a function f(x) is one-to-one on a domain D if f(a) ≠ f(b) whenever a ≠ b. The graph.
Logarithmic Functions & Graphs, Lesson 3.2, page 388 Objective: To graph logarithmic functions, to convert between exponential and logarithmic equations,
Exponential Functions An exponential function is of the form f (x) = a x, where a > 0. a is called the base. Ex. Let h(x) = 3.1 x, evaluate h(-1.8).
Notes Over 8.4 Rewriting Logarithmic Equations Rewrite the equation in exponential form.
Warm-up.
I can graph and apply logarithmic functions. Logarithmic functions are inverses of exponential functions. Review Let f(x) = 2x + 1. Sketch a graph. Does.
College Algebra Acosta/Karwowski. Chapter 6 Exponential and Logarithmic Functions.
Section 9.3 Logarithmic Functions  Graphs of Logarithmic Functions Log 2 x  Equivalent Equations  Solving Certain Logarithmic Equations 9.31.
Logarithms 2.5 Chapter 2 Exponents and Logarithms 2.5.1
Logarithmic Functions & Their Graphs
10.2 Logarithms and Logarithmic Functions Objectives: 1.Evaluate logarithmic expressions. 2.Solve logarithmic equations and inequalities.
The number e is ________________ It is also known as Euler’s number Irrational.
5.2 Logarithmic Functions & Their Graphs Goals— Recognize and evaluate logarithmic functions with base a Graph Logarithmic functions Recognize, evaluate,
Notes Over 5.2 Rewriting Logarithmic Equations and Rewrite the equation in exponential form. are equivalent. Evaluate each logarithm.
5.4 Logarithmic Functions. Quiz What’s the domain of f(x) = log x?
Chapter 4 – Exponential and Logarithmic Functions Logarithmic Functions.
Graphing Log Functions Pre-Calculus. Graphing Logarithms Objectives:  Make connections between log functions and exponential functions  Construct a.
Copyright © Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions.
4.2 Logarithmic Functions
February 13, 2012 At the end of today, you will be able to graph a logarithmic function. Warm-up: Describe the transformation for: f(x) = -3 x.
(a) (b) (c) (d) Warm Up: Show YOUR work!. Warm Up.
8.4 Logarithmic Functions
3.3 Logarithmic Functions and Their Graphs
Exponents – Logarithms xy -31/8 -2¼ ½ xy 1/8-3 ¼-2 ½ The function on the right is the inverse of the function on the left.
3.2 Logarithmic Functions and Their Graphs We know that if a function passes the horizontal line test, then the inverse of the function is also a function.
Warm Ups:  Describe (in words) the transformation(s), sketch the graph and give the domain and range:  1) g(x) = e x ) y = -(½) x - 3.
LEQ: How do you evaluate logarithms with a base b? Logarithms to Bases Other Than 10 Sec. 9-7.
Solving Logarithmic Equations I.. Relationship between Exponential and Logarithmic Equations. A) Logs and Exponentials are INVERSES of each other. 1) That.
9.1, 9.3 Exponents and Logarithms
LEQ: HOW DO YOU EVALUATE COMMON LOGARITHMS? Common Logarithms Sec. 9-5.
4.2 Logarithms. b is the base y is the exponent (can be all real numbers) b CANNOT = 1 b must always be greater than 0 X is the argument – must be > 0.
LOGARITHMS. Find the inverse function for each of the functions below. 1.f(x) = 3x – f(x) = 2 x.
LEQ: What is the process used to evaluate expressions containing the natural logarithm?
Warm Up Evaluate the following. 1. f(x) = 2 x when x = f(x) = log x when x = f(x) = 3.78 x when x = f(x) = ln x when x =
5.2 L OGARITHMIC F UNCTIONS & T HEIR G RAPHS Goals— Recognize and evaluate logarithmic functions with base a Graph Logarithmic functions Recognize, evaluate,
Logarithmic Functions We know: 2 3 =8 and 2 4 =16 But, for what value of x does 2 x = 10? To solve for an exponent, mathematicians defined logarithms.
Slide the Eraser Exponential and Logarithmic Functions.
Review of Logarithms. Review of Inverse Functions Find the inverse function of f(x) = 3x – 4. Find the inverse function of f(x) = (x – 3) Steps.
Logarithmic Functions & Their Graphs Goals— Recognize and evaluate logarithmic functions with base a Graph Logarithmic functions Recognize, evaluate, and.
5.2 Logarithmic Functions & Their Graphs
Logarithmic Functions
5.3 Logarithmic Functions & Graphs
5 Exponential and Logarithmic Functions
5.4 Logarithmic Functions and Models
Logarithmic Functions and Their Graphs
Warm-up: Solve for x. 2x = 8 2) 4x = 1 3) ex = e 4) 10x = 0.1
Exponential Functions
6.3 Logarithms and Logarithmic Functions
Review: How do you find the inverse of a function? Application of what you know… What is the inverse of f(x) = 3x? y = 3x x = 3y y = log3x f-1(x) = log3x.
Presentation transcript:

5.2 Logarithmic Functions & Their Graphs Goals— Recognize and evaluate logarithmic functions with base a Graph Logarithmic functions Recognize, evaluate, and graph natural logs Use logarithmic functions to model and solve real-life problems.

Is this function one to one? Must pass the horizontal line test. f(x) = 3x Is this function one to one? Yes Does it have an inverse? Yes

Logarithmic Function of base “a” Definition: Logarithmic function of base “a” - For x > 0, a > 0, and a  1, y = logax if and only if x = ay Read as “log base a of x” f(x) = logax is called the logarithmic function of base a.

The most important thing to remember about logarithms is…

a logarithm is an exponent.

Therefore, all logarithms can be written as exponential equations and all exponential equations can be written as logarithmic equations.

Write the logarithmic equation in exponential form 34 = 81 163/4 = 8 Write the exponential equation in logarithmic form 82 = 64 4-3 = 1/64 log 8 64 = 2 log4 (1/64) = -3

Evaluating Logs 2y = 32 2y = 25 y = 5 Think: y = log232 f(x) = log232 Step 1- rewrite it as an exponential equation. f(x) = log42 4y = 2 22y = 21 y = 1/2 2y = 32 f(x) = log10(1/100) Step 2- make the bases the same. 10y = 1/100 10y = 10-2 y = -2 2y = 25 f(x) = log31 Therefore, y = 5 3y = 1 y = 0

Evaluating Logs on a Calculator You can only use a calculator when the base is 10 Find the log key on your calculator.

Why? log 10 = 1 log 1/3 = -.4771 log 2.5 = .3979 log -2 = ERROR!!! Evaluate the following using that log key. log 10 = 1 log 1/3 = -.4771 log 2.5 = .3979 log -2 = ERROR!!! Why?

Properties of Logarithms loga1 = 0 because a0 = 1 logaa = 1 because a1 = a logaax = x and alogax = x If logax = logay, then x = y

Simplify using the properties of logs Rewrite as an exponent 4y = 1 Therefore, y = 0 log41= log77 = 1 Rewrite as an exponent 7y = 7 Therefore, y = 1 6log620 = 20

Use the properties of logs to solve these equations. log3x = log312 x = 12 log3(2x + 1) = log3x 2x + 1 = x x = -1 log4(x2 - 6) = log4 10 x2 - 6 = 10 x2 = 16 x = 4

Review: How do you find the inverse of a function? Application of what you know… What is the inverse of f(x) = 3x? y = 3x x = 3y y = log3x f-1(x) = log3x Rewrite the exponential as a logarithm…

Find the inverse of the following exponential functions… f(x) = 2x f-1(x) = log2x f(x) = 2x+1 f-1(x) = log2x - 1 f(x) = 3x- 1 f-1(x) = log3(x + 1)

Find the inverse of the following logarithmic functions… f(x) = log4x f-1(x) = 4x f(x) = log2(x - 3) f-1(x) = 2x + 3 f(x) = log3x – 6 f-1(x) = 3x+6

Graphs of Logarithmic Functions Graph g(x) = log3x It is the inverse of y = 3x Therefore, the table of values for g(x) will be the reverse of the table of values for y = 3x. y = 3x x y -1 1/3 1 3 2 9 y= log3x x y 1/3 -1 1 3 9 2  Domain? (0,)   Range? (-,)  Asymptotes? x = 0

Graphs of Logarithmic Functions g(x) = log4(x – 3) What is the inverse exponential function? y= 4x + 3 Show your tables of values.    y= 4x + 3 x y -1 3.25 4 1 7 2 19 y= log4(x – 3) x y 3.25 -1 4 7 1 19 2 Domain? (3,) Range? (-,) Asymptotes? x = 3

Graphs of Logarithmic Functions g(x) = log5(x – 1) + 4 What is the inverse exponential function? y= 5x-4 + 1  Show your tables of values.   y= 5x-4 + 1 x y 3 1.2 4 2 5 6 26 y= log5(x – 1) + 4 x y 1.2 3 2 4 6 5 26 Domain? (1,) Range? (-,) Asymptotes? x = 1

Natural Logarithmic Functions The function defined by f(x) = logex = ln x, x > 0 is called the natural logarithmic function.

Evaluating Natural Logs on a Calculator Find the ln key on your calculator.

Why? ln 2 = .6931 ln 7/8 = -.1335 ln 10.3 = 2.3321 ln -1 = ERROR!!! Evaluate the following using that ln key. ln 2 = .6931 ln 7/8 = -.1335 ln 10.3 = 2.3321 ln -1 = ERROR!!! Why?

Properties of Natural Logarithms ln1 = 0 because e0 = 1 Ln e = 1 because e1 = e ln ex = x and eln x = x If ln x = ln y, then x = y

Use properties of Natural Logs to simplify each expression Rewrite as an exponent ey = 1/e ey = e-1 Therefore, y = -1 ln 1/e= -1 2 ln e = 2 Rewrite as an exponent ln e = y/2 e y/2 = e1 Therefore, y/2 = 1 and y = 2. 5 eln 5=

Graphs of Natural Log Functions g(x) = ln(x + 2) Show your table of values. y= ln(x + 2) x y -2 error -1 .693 1 1.099 2 1.386   Domain? (-2,)   Range? (-,) Asymptotes? x = -2

Graphs of Natural Log Functions g(x) = ln(2 - x) Show your table of values. y= ln(2 - x) x y 2 error 1 .693 -1 1.099 -2 1.386   Domain? (-2,)   Range? (-,) Asymptotes? x = -2