Overview of Cryptographic Techniques Hector M Lugo-Cordero CIS 4361 Secure Operating System Administration 1.

Slides:



Advertisements
Similar presentations
CLASSICAL ENCRYPTION TECHNIQUES
Advertisements

Cryptography and Network Security Chapter 3
Cryptography and Network Security Chapter 2
Cryptography and Network Security Chapter 2. Chapter 2 – Classical Encryption Techniques Many savages at the present day regard their names as vital parts.
Announcement Grading adjusted –10% participation and two exams 20% each Newsgroup up Assignment upload webpage up Homework 1 will be released over the.
1 Chapter 3 – Block Ciphers and the Data Encryption Standard Modern Block Ciphers  now look at modern block ciphers  one of the most widely used types.
1 Chapter 3 – Block Ciphers and the Data Encryption Standard Modern Block Ciphers  now look at modern block ciphers  one of the most widely used types.
CSCE 790G: Computer Network Security
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
1 Day 04- Cryptography Acknowledgements to Dr. Ola Flygt of Växjö University, Sweden for providing the original slides.
Chapter 2 – Classical Encryption Techniques. Classical Encryption Techniques Symmetric Encryption Or conventional / private-key / single-key sender and.
Classical Encryption Techniques
Lecture 23 Symmetric Encryption
Review What is security: history and definition Security policy, mechanisms and services Security models.
Classical Encryption Techniques
CSE 651: Introduction to Network Security
Chapter 2 – Classical Encryption Techniques
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography. Secret (crypto) Writing (graphy) –[Greek word] Practice and study of hiding information Concerned with developing algorithms for: –Conceal.
Dr. Lo’ai Tawalbeh 2007 Chapter 2: Classical Encryption Techniques Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
1 University of Palestine Information Security Principles ITGD 2202 Ms. Eman Alajrami 2 nd Semester
Chapter 2 Classical Encryption Techniques. Symmetric Encryption n conventional / private-key / single-key n sender and recipient share a common key n.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Computer Science&Technology School of Shandong University Instructor: Hou Mengbo houmb AT sdu.edu.cn Office: Information Security Research Group.
Cryptography and Network Security Chapter 2. Symmetric Encryption  or conventional / private-key / single-key  sender and recipient share a common key.
Cryptography and Network Security (CS435) Part Two (Classic Encryption Techniques)
Cryptography and Network Security Chapter 2 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Symmetric Encryption or conventional / private-key / single-key sender and recipient share a common key all classical encryption algorithms are private-key.
 Classic Crypto  Slides based on those developed by Dr. Lawrie Brown at the Australian Defence Force Academy, University College, UNSW  See
1 Chapter 2-1 Conventional Encryption Message Confidentiality.
Network Security Lecture 11 Presented by: Dr. Munam Ali Shah.
Rather than just shifting the alphabet Could shuffle (jumble) the letters arbitrarily Each plaintext letter maps to a different random cipher text letter.
Module :MA3036NI Cryptography and Number Theory Lecture Week 3 Symmetric Encryption-2.
Data Security and Encryption (CSE348) 1. Lecture # 6 2.
1 University of Palestine Information Security Principles ITGD 2202 Ms. Eman Alajrami.
Computer and Network Security Rabie A. Ramadan Lecture 2.
Data Security and Encryption (CSE348) 1. Lecture # 4 2.
Stream Ciphers and Block Ciphers A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. Examples of classical stream.
1 University of Palestine Information Security Principles ITGD 2202 Ms. Eman Alajrami 2 nd Semester
Data Security and Encryption (CSE348) 1. Lecture # 3 2.
1 Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown [Changed by Somesh Jha]
Lecture 23 Symmetric Encryption
1 Cryptography and Network Security Fourth Edition by William Stallings Lecture slides by Lawrie Brown [Changed by Somesh Jha]
Information Systems Security 3. Chapter 2 – Classical Encryption Techniques Many savages at the present day regard their names as vital parts of themselves,
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Applied Cryptography (Symmetric) Part I. Many savages at the present day regard their names as vital parts of themselves, and therefore take great pains.
Symmetric Cipher Model Plaintext input 1- encryption algorithm 2- secret key Encryption Cipher text output Cipher text input 1- Decryption algorithm 2-
Chapter 2 – Classical Encryption Techniques. Symmetric Encryption or conventional / private-key / single-key sender and recipient share a common key all.
Cryptography and Network Security Chapter 2
Chapter 2 – Classical Encryption Techniques Many savages at the present day regard their names as vital parts of themselves, and therefore take great pains.
Network Security Lecture 13 Presented by: Dr. Munam Ali Shah.
Module :MA3036NI Symmetric Encryption -3 Lecture Week 4.
Lecture 2 (Chapter 2) Classical Encryption Techniques Prepared by Dr. Lamiaa M. Elshenawy 1.
1 Cryptography and Network Security Fourth Edition by William Stallings Lecture slides by Lawrie Brown [Changed by Somesh Jha]
Block Ciphers and the Data Encryption Standard. Modern Block Ciphers  One of the most widely used types of cryptographic algorithms  Used in symmetric.
Cryptography and Network Security Chapter 2 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
1 Classical Encryption Techniques. 2 Symmetric cipher model –Cryptography –Cryptanalysis Substitution techniques –Caesar cipher –Monoalphabetic cipher.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
By Marwan Al-Namari & Hafezah Ben Othman Author: William Stallings College of Computer Science at Al-Qunfudah Umm Al-Qura University, KSA, Makkah 1.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
Prof. Wenguo Wang Network Information Security Prof. Wenguo Wang Tel College of Computer Science QUFU NORMAL UNIVERSITY.
Cryptography and Network Security Chapter 2 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Lecture 4 Data Encryption Standard (DES) Dr. Nermin Hamza
Conventional Encryption Message Confidentiality
Cryptography and Network Security
CSCI-235 Micro-Computer Applications
Outline Some Basic Terminology Symmetric Encryption
Conventional Encryption Message Confidentiality
Cryptography and Network Security Chapter 3
Presentation transcript:

Overview of Cryptographic Techniques Hector M Lugo-Cordero CIS 4361 Secure Operating System Administration 1

2 Resources Used Lecture slides from Dr Ratan Guha CNT 6519 Wireless Security Forensics Cryptography and Network Security, Fourth Edition, by William Stallings Lecture slides for the textbook by Lawrie Brown Lecture slides by Henric Johnson,Blekinge Institute of Technology, Sweden

3 Outline Some Basic Terminology Conventional Encryption Principles Characteristics of Cryptographic Techniques Symmetric Encryption Classical Symmetric Encryption Algorithms Modern Symmetric Encryption Techniques

4 Some Basic Terminology plaintext - original message ciphertext - coded message cipher - algorithm for transforming plaintext to ciphertext key - info used in cipher known only to sender/receiver encipher (encrypt) - converting plaintext to ciphertext decipher (decrypt) - recovering ciphertext from plaintext cryptography - study of encryption principles/methods cryptanalysis (codebreaking) - study of principles/ methods of deciphering ciphertext without knowing key cryptology - field of both cryptography and cryptanalysis

5 Conventional Encryption Principles An encryption scheme has five ingredients: –Plaintext –Encryption algorithm –Secret Key –Ciphertext –Decryption algorithm Security depends on the secrecy of the key, not the secrecy of the algorithm

6 Characteristics of Cryptographic Techniques Classified along three independent dimensions: –The type of operations used for transforming plaintext to ciphertext –The number of keys used symmetric (single key) asymmetric (two-keys, or public-key encryption) –The way in which the plaintext is processed

7 Symmetric Encryption or conventional / private-key / single-key sender and recipient share a common key all classical encryption algorithms are private-key was only type prior to invention of public- key in 1970’s and by far most widely used

8 Symmetric Cipher Model

9 Requirements two requirements for secure use of symmetric encryption: –a strong encryption algorithm –a secret key known only to sender / receiver mathematically have: Y = E K (X) [= E(K, X) ] X = D K (Y) [= D(K, Y) ] assume encryption algorithm is known implies a secure channel to distribute key

10 Brute Force Search always possible to simply try every key most basic attack, proportional to key size assume either know / recognize plaintext Key Size (bits)Number of Alternative Keys Time required at 1 decryption/ µ s Time required at 10 6 decryptions/ µ s = 4.3  µ s= 35.8 minutes 2.15 milliseconds = 7.2  µ s= 1142 years hours = 3.4  µ s= 5.4  years5.4  years = 3.7  µ s= 5.9  years5.9  years 26 characters (permutation) 26! = 4   µ s= 6.4  years6.4  10 6 years

11 Classical Substitution Ciphers where letters of plaintext are replaced by other letters or by numbers or symbols or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

12 Caesar Cipher earliest known substitution cipher by Julius Caesar first attested use in military affairs replaces each letter by 3rd letter after example: meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB

13 Caesar Cipher can define transformation as: a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C mathematically give each letter a number a b c d e f g h i j k l m n o p q r s t u v w x y z then have Caesar cipher as: c = E(p) = (p + k) mod (26) p = D(c) = (c – k) mod (26)

14 Monoalphabetic Cipher rather than just shifting the alphabet could shuffle (jumble) the letters arbitrarily each plaintext letter maps to a different random ciphertext letter hence key is 26 letters long Plain: abcdefghijklmnopqrstuvwxyz Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN Plaintext: ifwewishtoreplaceletters Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

15 Playfair Cipher not even the large number of keys in a monoalphabetic cipher provides security one approach to improving security was to encrypt multiple letters the Playfair Cipher is an example invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair

16 Playfair Key Matrix a 5X5 matrix of letters based on a keyword fill in letters of keyword (minus duplicates) fill rest of matrix with other letters eg. using the keyword MONARCHY MONAR CHYBD EFGI/JK LPQST UVWXZ

17 Encrypting and Decrypting plaintext is encrypted two letters at a time 1.if a pair is a repeated letter, insert filler like 'X’ (low probability of appearance in language) 2.if both letters fall in the same row, replace each with letter to right (wrapping back to start from end) 3.if both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom) 4.otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair WirelessWi re le sx szXG MK UL XA XT

18 Polyalphabetic Ciphers polyalphabetic substitution ciphers A set of related monoalphabetic substitution rules is used use a key to select which alphabet is used for each letter of the message use each alphabet in turn repeat from start after end of key is reached make cryptanalysis harder with more alphabets to guess and flatter frequency distribution Key: deceptive plaintext: wireless ciphertext: zmtiaxao

19 Vigenère Cipher simplest polyalphabetic substitution cipher effectively multiple caesar ciphers key is multiple letters long K = k 1 k 2... k d i th letter specifies i th alphabet to use use each alphabet in turn repeat from start after d letters in message decryption simply works in reverse

20 Example of Vigenère Cipher write the plaintext out write the keyword repeated above it use each key letter as a caesar cipher key encrypt the corresponding plaintext letter eg using keyword deceptive key: deceptivedeceptivedeceptive plaintext: wearediscoveredsaveyourself ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Vernam Cipher and One-time Pad Keyword is as long as the plaintext and has no statistical relationship to it. Vernam system works on binary data with ith bit of text exclusive ored with ith bit of key to produce ith bit of cipher In one one-time pad key is used only once This scheme is unbreakable 21

Transposition Cipher Mapping is performed by some sort of permutation on the plaintext letters. Example: Rail fence of depth 2 text : meet me after the toga party m e m a t r h t g p r y e t e f e t e o a a t cipher: MEMATRHTGPRYETEFETEOAAT Rail fence of depth 2 22

Classical Ciphers Caesar Cipher Monoalphabetic Cipher Playfair Cipher Polyphabetic Cipher Vigenère Cipher Vernam Cipher and One-time Pad Transposition Cipher Cryptography -Part -I23

Modern Block Ciphers now look at modern block ciphers one of the most widely used types of cryptographic algorithms provide secrecy /authentication services focus on DES (Data Encryption Standard) to illustrate block cipher design principles

Block vs Stream Ciphers block ciphers process messages in blocks, each of which is then en/decrypted like a substitution on very big characters –64-bits or more stream ciphers process messages a bit or byte at a time when en/decrypting many current ciphers are block ciphers broader range of applications

Block Cipher Principles most symmetric block ciphers are based on a Feistel Cipher Structure needed since must be able to decrypt ciphertext to recover messages efficiently block ciphers look like an extremely large substitution would need table of 2 64 entries for a 64-bit block instead create from smaller building blocks using idea of a product cipher

Ideal Block Cipher

Claude Shannon and Substitution- Permutation Ciphers Claude Shannon introduced idea of substitution- permutation (S-P) networks in 1949 paper form basis of modern block ciphers S-P nets are based on the two primitive cryptographic operations seen before: –substitution (S-box) –permutation (P-box) provide confusion & diffusion of message & key

Confusion and Diffusion cipher needs to completely obscure statistical properties of original message a one-time pad does this more practically Shannon suggested combining S & P elements to obtain: diffusion – dissipates statistical structure of plaintext over bulk of ciphertext confusion – makes relationship between ciphertext and key as complex as possible

Feistel Cipher Structure Horst Feistel devised the feistel cipher –based on concept of invertible product cipher partitions input block into two halves –process through multiple rounds which –perform a substitution on left data half –based on round function of right half & subkey –then have permutation swapping halves implements Shannon’s S-P net concept

Feistel Cipher Structure

Feistel Cipher Design Elements block size key size number of rounds subkey generation algorithm round function fast software en/decryption ease of analysis

Feistel Cipher Encryption & Decryption