Towards Polynomial Lower Bounds for Dynamic Problems STOC 2010 Mihai P ă trașcu.

Slides:



Advertisements
Similar presentations
Dynamic Connectivity: Connecting to Networks and Geometry Timothy ChanMihai P ă trașcu Liam Roditty Weizmann.
Advertisements

Lower Bounds for 2-Dimensional Range Counting Mihai Pătraşcu
Planning for Fast Connectivity Updates Mihai Pă traşcu Mikkel Thorup …until June 2008 Jobs, anyone?
Dynamic Graph Algorithms - I
Tight Bounds for Dynamic Convex Hull Queries (Again) Erik DemaineMihai Pătraşcu.
How to Grow Your Lower Bounds Mihai P ă trașcu Tutorial, FOCS’10.
Lower Bounds for Data Structures Mihai P ă trașcu 2 nd Barriers Workshop, Aug. 29 ’10.
Lower Bound Techniques for Data Structures Mihai P ă trașcu … Committee: Erik Demaine (advisor) Piotr Indyk Mikkel Thorup.
1 Cell Probe Complexity - An Invitation Peter Bro Miltersen University of Aarhus.
© The McGraw-Hill Companies, Inc., Chapter 8 The Theory of NP-Completeness.
(Data) STRUCTURES Mihai P ă trașcu. LSD dyn. marked ancestor reachability oracles in the butterfly partial match(1+ε)-ANN ℓ 1, ℓ 2 NN in ℓ 1, ℓ 2 3-ANN.
October 26, 2005Copyright © by Erik D. Demaine and Charles E. LeisersonL11.1 Introduction to Algorithms 6.046J/18.401J LECTURE12 Skip Lists Data.
Computational Geometry & Collision detection
SODA Jan 11, 2004Partial Sums1 Tight Bounds for the Partial-Sums Problem Mihai PǎtraşcuErik Demaine (presenting) MIT CSAIL.
Data Structures: Range Queries - Space Efficiency Pooya Davoodi Aarhus University PhD Defense July 4, 2011.
Hit or Miss ? !!!.  Cache RAM is high-speed memory (usually SRAM).  The Cache stores frequently requested data.  If the CPU needs data, it will check.
Hit or Miss ? !!!.  Small size.  Simple and fast.  Implementable with hardware.  Does not need too much power.  Does not predict miss if we have.
Visibility-Based Pursuit-Evasion in a Polygonal Environment L.J. Guibas, J.C. Latombe, S.M. LaValle, D. Lin, and R. Motwani Finding an Unpredictable Target.
Lecture 12 : Special Case of Hidden-Line-Elimination Computational Geometry Prof. Dr. Th. Ottmann 1 Special Cases of the Hidden Line Elimination Problem.
Semidefinite Programming
Special Cases of the Hidden Line Elimination Problem Computational Geometry, WS 2007/08 Lecture 16 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen,
UNC Chapel Hill M. C. Lin Overview of Last Lecture About Final Course Project –presentation, demo, write-up More geometric data structures –Binary Space.
Some 3CNF Properties are Hard to Test Eli Ben-Sasson Harvard & MIT Prahladh Harsha MIT Sofya Raskhodnikova MIT.
CSE 589 Applied Algorithms Spring Colorability Branch and Bound.
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Distributed Algorithms on a Congested Clique Christoph Lenzen.
Tight Bounds for Graph Problems in Insertion Streams Xiaoming Sun and David P. Woodruff Chinese Academy of Sciences and IBM Research-Almaden.
Edge Covering problems with budget constrains By R. Gandhi and G. Kortsarz Presented by: Alantha Newman.
GRAPHS CSE, POSTECH. Chapter 16 covers the following topics Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component,
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces (1996) L. Kavraki, P. Švestka, J.-C. Latombe, M. Overmars.
Fall 2015 Lecture 4: Sorting in linear time
1 CSE 326: Data Structures: Hash Tables Lecture 12: Monday, Feb 3, 2003.
PODC Distributed Computation of the Mode Fabian Kuhn Thomas Locher ETH Zurich, Switzerland Stefan Schmid TU Munich, Germany TexPoint fonts used in.
Path Minima on Dynamic Weighted Trees Pooya Davoodi Aarhus University Aarhus University, November 17, 2010 Joint work with Gerth Stølting Brodal and S.
A Worst Case, Constant Time Priority Queue: Beating a Lower Bound Ian Munro University of Waterloo Joint work with Andrej Brodnik (Ljubljana & Luleå) Svante.
Introduction to Motion Planning
Implicit Dictionaries with O(1) Modifications per Update and Fast Search Gianni Franceschini and Ian Munro  Elements kept in 1 st n positions of an array.
Data Structure II So Pak Yeung Outline Review  Array  Sorted Array  Linked List Binary Search Tree Heap Hash Table.
GRAPHS. Graph Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree Types of graphs: undirected,
Lecture 14 Lower Bounds Decision tree model Linear-time reduction.
The Fundamental Theorem of Algebra It’s in Sec. 2.6a!!! Homework: p odd, all.
Final Review Chris and Virginia. Overview One big multi-part question. (Likely to be on data structures) Many small questions. (Similar to those in midterm.
BSP Tree Supplement Jyun-Ming Chen. Fall Kd-Tree and BSP tree kd-tree is a special kind of bsp tree.
The Theory of NP-Completeness 1. Nondeterministic algorithms A nondeterminstic algorithm consists of phase 1: guessing phase 2: checking If the checking.
Sorting & Lower Bounds Jeff Edmonds York University COSC 3101 Lecture 5.
Honors Track: Competitive Programming & Problem Solving Seminar Topics Kevin Verbeek.
Online Bipartite Matching with Augmentations Presentation by Henry Lin Joint work with Kamalika Chaudhuri, Costis Daskalakis, and Robert Kleinberg.
Confluently Persistent Tries Eric Price, MIT joint work with Erik Demaine, MIT Stefan Langerman, Université Libre de Bruxelles.
Sorting.
The Theory of NP-Completeness
A Worst Case, Constant Time Priority Queue
Lecture 2-2 NP Class.
Limits of Data Structures
CS 326A: Motion Planning Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces (1996) L. Kavraki, P. Švestka, J.-C. Latombe,
Improved Randomized Algorithms for Path Problems in Graphs
Theory & Practice of Linear Probing
CSC 421: Algorithm Design & Analysis
Lecture 22 Complexity and Reductions
Adjacency labeling schemes and induced-universal graphs
C-obstacle Query Computation for Motion Planning
Richard Anderson Lecture 25 NP-Completeness
Linear Sorting Sorting in O(n) Jeff Chastine.
Range-Efficient Computation of F0 over Massive Data Streams
Kinetic Collision Detection for Convex Fat Objects
Chapter 11: Indexing and Hashing
The Theory of NP-Completeness
Collision Detection Part II
Bin Packing Michael T. Goodrich Some slides adapted from slides from
Lecture 24 Vertex Cover and Hamiltonian Cycle
Presentation transcript:

Towards Polynomial Lower Bounds for Dynamic Problems STOC 2010 Mihai P ă trașcu

Reduction Roadmap 3SUM Convolution-3SUM triangle reporting Multiphase Problem dyn. reachabilitysubgraph conn.range mode … 3-party NOF communication game

Complexity inside P MaxFlow: O(m 1.5 ) time 3SUM: O(n 2 ) time “S = {n numbers}, ( ∃ )x,y,z ∈ S with x+y+z=0?” Wouldn’t it be nice… “If 3SUM requires Ω*(n 2 )  MaxFlow requires Ω*(m 1.5 )” Is this optimal?

3SUM O(n 2 ) [Gajentaan, Overmars’95] FFT  O(U lg U) if S ⊆ [U] smart hashing  roughly O(n 2 / lg 2 n) [Baran, Demaine, P.’06] Hardness: Ω(n 2 ) for low-degree decision tree [Erickson’95,’99] [Ailon-Chazelle’04] n o(d) for d-SUM => 2 o(n) for k-SAT, ∀ k=O(1) [P.-Williams’10]

3SUM-hardness ∃ 3 collinear points? ∃ line separating n segments in two? minimum area triangle Do n triangles cover given triangle? Does this polygon fit into this polygon? Motion planning: robot, obstacles = segments Algebraic reductions… E.g. a ↦ (a,a 3 ) (a,a 3 ) – (b,b 3 ) – (c,c 3 ) collinear  a+b+c=0 “require” Ω*(n 2 ) time

A “Fancier” Reduction Theorem: If 3SUM requires Ω*(n 2 )  reporting m triangles in a graph requires Ω*(m 4/3 ) Assuming FMM takes O(n 2 ) : Triangle detection: O(m 4/3 ) Reporting m triangles: O(m 1.4 ) [Pagh] Recently, more reductions by [Vassilevska, Williams] inc. reporting triangles  triangle detection

Reduction Roadmap Multiphase Problem dyn. reachabilitysubgraph conn.range mode … 3SUM Convolution-3SUM triangle reporting 3-party NOF communication game

Convolution-3SUM Convolution:A[1..n], B[1..n]  C[k] = Σ A[i+k]·B[i] A[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8] B[1]B[2]B[3]B[4]B[5]B[6]B[7]B[8] k=2 C[0]C[1]C[2]C[3]C[4]C[5]C[6]C[7]

Convolution-3SUM Convolution-3SUM: ( ∃ ) i, k ? C[k] = A[i+k] + B[i] A[1]A[2]A[3]A[4]A[5]A[6]A[7]A[8] B[1]B[2]B[3]B[4]B[5]B[6]B[7]B[8] k=2 C[0]C[1]C[2]C[3]C[4]C[5]C[6]C[7]

Convolution-3SUM Convolution-3SUM: ( ∃ ) i, k ? C[k] = A[i+k] + B[i] 3SUM: ( ∃ ) i, j, k ? C[i] = A[i] + B[j] Theorem: 3SUM requires Ω*(n 2 ) time iffConvolution-3SUM requires Ω*(n 2 ) time

Linear Hashing Want: x ↦ h(x) linear & few collisions almost linear (±1) surprisingly good load balancing x random odd # h(x)

3SUM  Conv-3SUM aebdc x + y = z  h(x)+h(y) = h(z)  A[h(x)]+B[h(y)]=C[h(z)] a b c d e h(a) h(e) h(b) h(d) h(c)

Reduction Roadmap Multiphase Problem dyn. reachabilitysubgraph conn.range mode … 3SUM Convolution-3SUM triangle reporting 3-party NOF communication game

Conv-3SUM  Triangle Reporting Hash A, B, C ↦ range [√n] O(n 1.5 ) false positives  can check all if reported fast h 1 + h 2 = h(C[i√n + j] { k | h(B[k]) = h 2 } shifted by j { k | h(A[k]) = h 1 } shifted by i√n (h 1, i) (h 2, j) k

Reduction Roadmap 3SUM Convolution-3SUM triangle reporting dyn. reachabilitysubgraph conn.range mode … Multiphase Problem 3-party NOF communication game

Dynamic Lower Bounds [Fredman, Saks STOC’89] t q =Ω(lg n / lg (t u lg n)) tqtq tutu max =Ω(lg n/lglg n) n 1-o(1) nεnε lg n lg n/lglg n lg n nεnε lg n/lglg n

Dynamic Lower Bounds [Fredman, Saks STOC’89] t q =Ω(lg n / lg (t u lg n)) [Alstrup, Husfeldt, Rauhe FOCS’98] t q =Ω(lg n / lg t u ) tqtq tutu max =Ω(lg n/lglg n) n 1-o(1) nεnε lg n nεnε lg n/lglg n

Dynamic Lower Bounds [Fredman, Saks STOC’89] t q =Ω(lg n / lg (t u lg n)) [Alstrup, Husfeldt, Rauhe FOCS’98] t q =Ω(lg n / lg t u ) [P., Demaine STOC’04] t q =Ω(lg n / lg (t u /lg n)) tqtq tutu max =Ω(lg n) n 1-o(1) nεnε lg n lg n/lglg n lg n nεnε lg n/lglg n

Dynamic Lower Bounds [Fredman, Saks STOC’89] t q =Ω(lg n / lg (t u lg n)) [Alstrup, Husfeldt, Rauhe FOCS’98] t q =Ω(lg n / lg t u ) [P., Demaine STOC’04] t q =Ω(lg n / lg (t u /lg n)) [P., Tarnita ICALP’05] t u =Ω(lg n / lg (t q /lg n)) tqtq tutu n 1-o(1) nεnε lg n lg n/lglg n lg n nεnε lg n/lglg n tutu max =Ω(lg n)

Dynamic Lower Bounds [Fredman, Saks STOC’89] t q =Ω(lg n / lg (t u lg n)) [Alstrup, Husfeldt, Rauhe FOCS’98] t q =Ω(lg n / lg t u ) [P., Demaine STOC’04] t q =Ω(lg n / lg (t u /lg n)) [P., Tarnita ICALP’05] t u =Ω(lg n / lg (t q /lg n)) [P., Thorup ’10] t u =o(lg n)  t q ≥ n 1-o(1) tqtq tutu n 1-o(1) nεnε lg n lg n/lglg n lg n nεnε lg n/lglg n

Dynamic Lower Bounds [Fredman, Saks STOC’89] t q =Ω(lg n / lg (t u lg n)) [Alstrup, Husfeldt, Rauhe FOCS’98] t q =Ω(lg n / lg t u ) [P., Demaine STOC’04] t q =Ω(lg n / lg (t u /lg n)) [P., Tarnita ICALP’05] t u =Ω(lg n / lg (t q /lg n)) [P., Thorup ’10] t u =o(lg n)  t q ≥ n 1-o(1) tqtq tutu n 1-o(1) nεnε lg n lg n/lglg n lg n nεnε lg n/lglg n Bold conjecture

The Multiphase Problem Conjecture: if u∙X << k, must have X=Ω(u ε ) S 1, …, S k ⊆ [u] time T ⊆ [u] time O(k∙u∙X)time O(u∙X)time O(X) S i ∩T?

Reduction Roadmap 3SUM Convolution-3SUM triangle reporting dyn. reachabilitysubgraph conn.range mode … Multiphase Problem 3-party NOF communication game

The Multiphase Problem Conjecture: if u∙X << k, must have X=Ω(u ε ) Sample application: maintain array A[1..n] under updates Query: what’s the must frequent element in A[i..j]? Conjecture  max{t u,t q } = Ω(n ε ) S 1, …, S k ⊆ [u] time T ⊆ [u] time O(k∙u∙X)time O(u∙X)time O(X) [u]\S 1 ; S 1 ; … ; [u]\S i ; S i ; … ; [u]\S k ; S k ; T S i ∩T? query(i)

Reduction Roadmap 3SUM Convolution-3SUM triangle reporting dyn. reachabilitysubgraph conn.range mode … Multiphase Problem For every edge (u,v) … test whether N(u) ∩N(v) 3-party NOF communication game

Reduction Roadmap 3SUM Convolution-3SUM triangle reporting dyn. reachabilitysubgraph conn.range mode … Multiphase Problem 3-party NOF communication game

3-Party, Number-on-Forehead S 1, …, S k ⊆ [u] time T ⊆ [u] time O(k∙u∙X)time O(u∙X)time O(X) S i ∩T? i S 1, …, S k T

The End