Electromagnetic form factors in the relativized Hypercentral CQM E. Santopinto Trieste 22_26 May 2006 M. Ferraris, M.Giannini, M. Pizzo, E. Santopinto,

Slides:



Advertisements
Similar presentations
Parton distribution functions and quark orbital motion Petr Závada Institute of Physics, Prague The 6 th Circum-Pan-Pacific Symposium on High Energy Spin.
Advertisements

Three -cluster description of the 12 C nucleus A.V. Malykh (JINR, BLTP) The work was done in collaboration with O.I. Kartavtsev, S.I. Fedotov.
Meson cloud and nucleon strangeness: an update F.S. N., F. Carvalho, M. Nielsen University of São Paulo Brazil H. Forkel, F. Navarra, M. Nielsen, PRC 61,
Hadron structure and hadronic matter M.Giannini Cortona,13 october 2006 Introduction Properties of the nucleon Interlude Inclusive and semi-inclusive reactions.
1 The and -Z Exchange Corrections to Parity Violating Elastic Scattering 周海清 / 东南大学物理系 based on PRL99,262001(2007) in collaboration with C.W.Kao, S.N.Yang.
Exclusive   and  electro-production at high Q 2 in the resonance region Mark Jones Jefferson Lab TexPoint fonts used in EMF. Read the TexPoint manual.
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
Electromagnetic multipole moments of baryons Alfons Buchmann University of Tübingen 1.Introduction 2.Method 3.Observables 4.Results 5.Summary NSTAR 2007,
L.V. Fil’kov, V.L. Kashevarov Lebedev Physical Institute Dipole and quadrupole polarizabilities of the pion NSTAR 2007.
NSTAR 2007Roelof Bijker, ICN-UNAM1 Flavor Asymmetry of the Nucleon Sea in an Unquenched Quark Model Introduction Degrees of freedom Unquenched quark model.
Electroexcitation of the Roper resonance from CLAS data Inna Aznauryan, Volker Burkert Jefferson Lab N * 2007, Bonn, September 7, 2007.
1 Nuclear Binding and QCD ( with G. Chanfray) Magda Ericson, IPNL, Lyon SCADRON70 Lisbon February 2008.
STAR Patricia Fachini QM20081 ρ 0 Production at High p T in Central Au+Au and p+p collisions at  s NN = 200 GeV in STAR STAR Patricia Fachini Brookhaven.
Lattice 07, Regensburg, 1 Magnetic Moment of Vector Mesons in Background Field Method Structure of vector mesons Background field method Some results x.
Free Quarks versus Hadronic Matter Xiao-Ming Xu. picture below the critical temperature T c.
1. Introduction 2.     3.  p    n 4.     5.     A   A 6. Discussion 7. Summary Bosen Workshop 2007 Review on.
Free Quarks and Antiquarks versus Hadronic Matter Xiao-Ming Xu Collaborator: Ru Peng.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
Lecture 5: Electron Scattering, continued... 18/9/2003 1
The Structure of the Nucleon Introduction Meson cloud effects: two-component model Strange form factors Results Summary and conclusions Roelof Bijker ICN-UNAM.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
Electromagnetic form factors in the relativized Hypercentral CQM M. De Sanctis, M.M.Giannini, E. Santopinto, A. Vassallo Introduction The hypercentral.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Testing saturation with diffractive jet production in DIS Cyrille Marquet SPhT, Saclay Elastic and Diffractive Scattering 2005, Blois, France based on.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
2+1 Relativistic hydrodynamics for heavy-ion collisions Mikołaj Chojnacki IFJ PAN NZ41.
Measurement of high lying nucleon resonances and search for missing state in double charged pion electroproduction off proton E.Golovach for the CLAS collaboration.
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physic, National Taiwan University  Motivations  Model for  * N →  N DMT (Dubna-Mainz-Taipei)
Dynamical study of N-  transition with N(e,e'  ) Shin Nan Yang Department of Physics National Taiwan University Collaborators: G.Y. Chen, J.C. Chen (NTU)
Electromagnetic N →  (1232) Transition Shin Nan Yang Department of Physics National Taiwan University Lattice QCD Journal Club, NTU, April 20, 2007 Pascalutsa,
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
1 Keitaro Nagata, Chung-Yuan Christian University Atsushi Hosaka, RCNP, Osaka Univ. Structure of the nucleon and Roper Resonance with Diquark Correlations.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Nucleon Resonances in  Scattering up to energies W < 2.0 GeV  introduction  a meson-exchange model for  scattering  conventional resonance parameters.
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Relativistic Collective Coordinate System of Solitons and Spinning Skyrmion Toru KIKUCHI (Kyoto Univ.) Based on arXiv: ( Phys. Rev. D 82,
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Exclusive electroproduction of two pions at HERA V. Aushev (on behalf of the ZEUS Collaboration) April 11-15, 2011 Newport News Marriott at City Center.
School of Collective Dynamics in High-Energy CollisionsLevente Molnar, Purdue University 1 Effect of resonance decays on the extracted kinetic freeze-out.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Alfons Buchmann Universität Tübingen Introduction
Hyperon Polarization in Heavy ion Collisions C. C. Barros Jr. Universidade Federal de Santa Catarina Brasil Strangeness in Quark Matter 2013 University.
Shin Nan Yang National Taiwan University Collaborators: Guan Yeu Chen (Taipei) Sabit S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) DMT dynamical model.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
1 Recent Results on J/  Decays Shuangshi FANG Representing BES Collaboration Institute of High Energy Physics, CAS International Conference on QCD and.
Nucleon Form Factors Understood by Vector Meson Exchange Earle Lomon(MIT)Jlab12/12/08 Summary: Description of model, history & early success Details of.
DPyC 2007Roelof Bijker, ICN-UNAM1 An Unquenched Quark Model of Baryons Introduction Degrees of freedom Unquenched quark model Closure limit; Spin of the.
IN THE NAME OF GOD Spectrum of Nonstrange Baryons Resonances by Using a New Mass Formula under the Octic Potential Presented by: Nasrin Salehi Faculty.
The hypercentral Constituent Quark Model
M. Radici - Time-like form factors
Polarization in charmless B VV decays
Masses & Magnetic Moment of Charmed Baryons in Hyper Central Model
Handout 5 : Electron-Proton Elastic Scattering
Handout 5 : Electron-Proton Elastic Scattering
Mainz: Drechsel, Tiator Taipei: Guan Yeu Chen, SNY
N* Transition form factors in a light-cone relativistic quark model
Exciting Hadrons Vladimir Pascalutsa
Charm2010 4TH International Workshop on Charm Physics
Polarized Structure Function of Nucleon and Orbital Angular Momentum
Excited state nucleon spectrum
Towards Understanding the In-medium φ Meson with Finite Momentum
Current Status of EBAC Project
Samara State University, Samara, Russia
Pion transition form factor in the light front quark model
5-quark states in a chiral potential Atsushi Hosaka (RCNP)
Institute of Modern Physics Chinese Academy of Sciences
Presentation transcript:

Electromagnetic form factors in the relativized Hypercentral CQM E. Santopinto Trieste 22_26 May 2006 M. Ferraris, M.Giannini, M. Pizzo, E. Santopinto, L. Tiator,Phys. Lett. B 364, 231 (1995). E. Santopinto, F. Iachello, M. Giannini, Eur. Phys. J. A 1, 307 (1998). R. Bijker, E. Santopinto, F. Iachello, J. Phys. A 31, 9041 (1998). M. Aiello, M. Ferraris, M. Giannini, M.Pizzo, E. Santopinto, Phys. Lett. B 387, 215 (1996). M. De Sanctis, M.M. Giannini, L.Repetto, E. Santopinto, Phys. Rev. C 62, (2000). De Sanctis, M.Giannini, E.Santopinto, A.Vassallo, Nucl. Phys. A.755,294(2005)

Introduction The hypercentral Constituent Quark Model The elastic nucleon form factors (relativistic effects) Conclusion Work done in collaboration with M. Giannini, A. Vassallo, M. De Santis

New Jlab data on nucleon f.f. Give rise to problems: compatibility with old (Rosenbluth plot) data why the ratio G E /G M decreases? is there any zero in the f.f. ?

VMD models (fits) FF = F intr * VMD propagators Mesons F intr JIL dipole monopole G K QCD-interpolation

Skyrme Model Holzwarth 1996,2002 ff given by soliton + VMD dip at Q 2 3 GeV 2 Boosting of the soliton dip at Q 2 10 GeV 2 Skyrmion (nucleon) mass 1648 MeV

The Hypercentral Constituent Quark Model M. Ferraris et al., Phys. Lett. B364, 231 (1995)

Jacobi coordinates SPACE WAVE FUNCTION 12 3 = r- r 12 2 = r 2 r2 rr Hyperspherical coordinates ( (x 22 +x = (size) arc tg (shape)

Quark-antiquark lattice potentialG.S. Bali Phys. Rep. 343, 1 (2001)

3-quark lattice potential G.S. Bali Phys. Rep. 343, 1 (2001)

Electromagnetic properties Photocouplings M. Aiello et al., PL B387, 215 (1996) Helicity amplitudes (transition f.f.) M. Aiello et al., J. of Phys. G24, 753 (1998) Elastic form factors of the nucleon M. De Sanctis et al., EPJ A1, 187 (1998) Structure functions to be published Fixed parameters predictions

Dynamical model (Mainz group)

please note the calculated proton radius is about 0.5 fm (value previously obtained by fitting the helicity amplitudes) not good for elastic form factors there is lack of strength at low Q 2 (outer region) in the e.m. transitions emerging picture: quark core (0.5 fm) plus (meson or sea- quark) cloud

ELASTIC FORM FACTORS 1. - Relativistic corrections to the elastic form factors 2. - Results with the semirelativistic CQM 3. - Introduction of Quark form factors

1.- Relativistic corrections to form factors Breit frame Lorentz boosts applied to the initial and final state Expansion of current matrix elements up to first order in quark momentum Results A rel (Q 2 ) = F A n.rel (Q 2 eff ) F = kin factor Q 2 eff = Q 2 (M N /E N ) 2

calculated

2.- Results with the semirelativistic M. De Sanctis, M. Giannini., E. Santopinto, A. Vassallo, Nucl. Phys. A.755,294(2005) Relativistic kinetic energy Boosts to initial and final states Expansion of current to any order Conserved current

and not much different from the NR case V(x) = - /x + x

Calculated values!

Q 2 F 2 p /F 1 p Q F 2 p /F 1 p

3.- Quark form factors M. De Sanctis, M. Giannini, E. Santopinto, A. Vassallo, Nucl. Phys. A.755,294(2005) Quark form factors are added into the current ff = F intr * quark form factors semirelativistic hCQM input (calculated) Monopole + dipole form for qff Fit of: –G E p /G M p ratio (polarization data) –G M p ; G E n ;G M n

Q 2 F 2 p /F 1 p Q F 2 p /F 1 p

Conclusion The hCQM provides a consistent framework for the description of all the 4 nucleon electromagnetic form factors Relativity is crucial in explaining the decrease of the ratio G E /G M Quark form factors are necessary in order to get a good reproduction of the Q 2 behaviour