Math 143 Section 7.3 Parabolas. A parabola is a set of points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the.

Slides:



Advertisements
Similar presentations
Parabola Conic section.
Advertisements

Conic Sections Parabola.
Parabolas GEO HN CCSS: G.GPE.2. Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and.
College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson.
Copyright © 2007 Pearson Education, Inc. Slide 6-2 Chapter 6: Analytic Geometry 6.1Circles and Parabolas 6.2Ellipses and Hyperbolas 6.3Summary of the.
Section 9.3 The Parabola.
Unit 5 Conics... The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from a fixed.
Parabolas.
EXAMPLE 1 Graph an equation of a parabola SOLUTION STEP 1 Rewrite the equation in standard form x = – Write original equation Graph x = – y.
Section 9.1 Conics.
Graph an equation of a parabola
Parabolas Section The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
Copyright © Cengage Learning. All rights reserved. Conic Sections.
Sullivan Algebra and Trigonometry: Section 10.2 The Parabola
Section 7.1 – Conics Conics – curves that are created by the intersection of a plane and a right circular cone.
Recall that the equations for a parabola are given by ...
Conic Sections Parabola. Conic Sections - Parabola The intersection of a plane with one nappe of the cone is a parabola.
Parabola Word Problem 3/31/14.
OHHS Pre-Calculus Mr. J. Focht
Copyright © 2011 Pearson Education, Inc. Slide
ALGEBRA 2 Write an equation for a graph that is the set of all points in the plane that are equidistant from point F(0, 1) and the line y = –1. You need.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 9 Analytic Geometry.
& & & Formulas.
11.3 Parabolas Objectives: Define a parabola.
Conics can be formed by the intersection
10.2 The Parabola. A parabola is defined as the locus of all points in a given plane that are the same distance from a fixed point, called the focus,
9.2 THE PARABOLA. A parabola is defined as the collection of all points P in the plane that are the same distance from a fixed point F as they are from.
10.2 The Parabola. A parabola is defined as the collection of all points P in the plane that are the same distance from a fixed point F as they are from.
TH EDITION LIAL HORNSBY SCHNEIDER COLLEGE ALGEBRA.
As you come in, get a slip of paper from your teacher and fill in the information in the chart. Be prepared to justify your answers (explaining why).
Conics Test Last chance to SHINE!!. Unit 12 Conics Test Conic Graphing: 39 pts Completing the Square: 7 pts Writing Equations: 14 pts Conic Applications:
Equations of Parabolas. A parabola is a set of points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the focus.
Section 11.1 Section 11.2 Conic Sections The Parabola.
Section 9.3 The Parabola. Finally, something familiar! The parabola is oft discussed in MTH 112, as it is the graph of a quadratic function: Does look.
1 © 2010 Pearson Education, Inc. All rights reserved © 2010 Pearson Education, Inc. All rights reserved Chapter 10 Conic Sections.
Section 10-2 Pages Introduction to Conics: Parabolas.
Honors Precalculus: Do Now Take the following shape (called a double napped cone -it is hollow). Draw it on your paper. Now take a plane and intersect.
Advanced Geometry Conic Sections Lesson 3
The Parabola. Definition of a Parabola A Parabola is the set of all points in a plane that are equidistant from a fixed line (the directrix) and a fixed.
March 19 th copyright2009merrydavidson Conic sections.
Conic Sections.
Conics: Parabolas. Parabolas: The set of all points equidistant from a fixed line called the directrix and a fixed point called the focus. The vertex.
Introduction to Conic Sections Conic sections will be defined in two different ways in this unit. 1.The set of points formed by the intersection of a plane.
Conic Sections There are 4 types of Conics which we will investigate: 1.Circles 2.Parabolas 3.Ellipses 4.Hyperbolas.
Warm UpNO CALCULATOR 1) Determine the equation for the graph shown. 2)Convert the equation from polar to rectangular. r = 3cosθ + 2sin θ 3)Convert the.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley CHAPTER 7: Conic Sections 7.1 The Parabola 7.2 The Circle and the Ellipse 7.3 The.
CONIC SECTIONS 1.3 Parabola. (d) Find the equation of the parabola with vertex (h, k) and focus (h+p, k) or (h, k+p). (e) Determine the vertex and focus.
Section 9.1 Parabolas.
10.1 Circles and Parabolas Conic Sections
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
2-3: Focus of a Parabola Explore the focus and the directrix of a parabola. Write equations of parabolas.
10.1 Parabolas.
2-3: Focus of a Parabola Explore the focus and the directrix of a parabola. Write equations of parabolas.
Unit 2: Day 6 Continue  .
Section 9.3 The Parabola.
Section 10.1 The Parabola Copyright ©2013, 2009, 2006, 2005 Pearson Education, Inc.
Chapter 6: Analytic Geometry
Chapter 6: Analytic Geometry
Parabolas Section
Parabolas.
Chapter 6: Analytic Geometry
Warm-Up 1. Find the distance between (3, -3) and (-1, 5)
Section 9.3 The Parabola.
Parabolas GEO HN CCSS: G.GPE.2
Parabolas.
Section 9.3 The Parabola.
Intro to Conic Sections
Presentation transcript:

Math 143 Section 7.3 Parabolas

A parabola is a set of points in a plane that are equidistant from a fixed line, the directrix, and a fixed point, the focus. For any point Q that is on the parabola, d 2 = d 1 Directrix Focus Q d1d1 d2d2 The latus rectum of a parabola is a line segment that passes through the focus, is parallel to the directrix and has its endpoints on the parabola. The length of the latus rectum is |4p| where p is the distance from the vertex to the focus.

V Things you should already know about a parabola. Forms of equations y = a(x – h) 2 + k opens up if a is positive opens down if a is negative vertex is (h, k) y = ax 2 + bx + c opens up if a is positive opens down if a is negative vertex is, f( ) -b 2a Thus far in this course we have studied parabolas that are vertical - that is, they open up or down and the axis of symmetry is vertical

In this unit we will also study parabolas that are horizontal – that is, they open right or left and the axis of symmetry is horizontal In these equations it is the y-variable that is squared. V x = a(y – k) 2 + h x = ay 2 + by + c or

Horizontal Hyperbola Vertical Hyperbola If a > 0, opens right If a < 0, opens left The directrix is vertical x = ay 2 + by + c y = ax 2 + bx + c Vertex: x = If a > 0, opens up If a < 0, opens down The directrix is horizontal Remember: |p| is the distance from the vertex to the focus vertex: -b 2a y = -b 2a a = 1 4p the directrix is the same distance from the vertex as the focus is

Horizontal Parabola Vertical Parabola Vertex: (h, k) If 4p > 0, opens right If 4p < 0, opens left The directrix is vertical the vertex is midway between the focus and directrix (y – k) 2 = 4p(x – h) (x – h) 2 = 4p(y – k) Vertex: (h, k) If 4p > 0, opens up If 4p < 0, opens down The directrix is horizontal and the vertex is midway between the focus and directrix Remember: |p| is the distance from the vertex to the focus

The vertex is midway between the focus and directrix, so the vertex is (-1, 4) Equation: (y – 4) 2 = 12(x + 1) |p| = 3 Find the standard form of the equation of the parabola given: the focus is (2, 4) and the directrix is x = - 4 The directrix is vertical so the parabola must be horizontal and since the focus is always inside the parabola, it must open to the right F Equation: (y – k) 2 = 4p(x – h) V

The vertex is midway between the focus and directrix, so the directrix for this parabola is y = -1 Equation: (x – 2) 2 = -8(y + 3) |p| = 2 Find the standard form of the equation of the parabola given: the vertex is (2, -3) and focus is (2, -5) Because of the location of the vertex and focus this must be a vertical parabola that opens down F Equation: (x – h) 2 = 4p(y – k) V

- (y + 3) 2 = 4(x + 1) Find the vertex, focus and directrix. Then graph the parabola Vertex: (-1, -3) The parabola is horizontal and opens to the right 4p = 4 p = 1 F V Focus: (0, -3) Directrix: x = -2 x = ¼(y + 3) 2 – 1 xyxy

Directrix: x = 6 y 2 – 2y + 12x – 35 = 0 Convert the equation to standard form Find the vertex, focus, and directrix y 2 – 2y + ___ = -12x ___11 (y – 1) 2 = -12x + 36 (y – 1) 2 = -12(x – 3) The parabola is horizontal and opens left Vertex: (3, 1) 4p = -12 p = -3 F V Focus: (0, 1)

A satellite dish is in the shape of a parabolic surface. The dish is 12 ft in diameter and 2 ft deep. How far from the base should the receiver be placed? Consider a parabola cross-section of the dish and create a coordinate system where the origin is at the base of the dish (-6, 2)(6, 2) Since the parabola is vertical and has its vertex at (0, 0) its equation must be of the form: x 2 = 4py At (6, 2), 36 = 4p(2) so p = 4.5 thus the focus is at the point (0, 4.5) The receiver should be placed 4.5 feet above the base of the dish.

The towers of a suspension bridge are 800 ft apart and rise 160 ft above the road. The cable between them has the shape of a parabola, and the cable just touches the road midway between the towers. What is the height of the cable 100 ft from a tower? 100 (300, h) 300 Since the parabola is vertical and has its vertex at (0, 0) its equation must be of the form: x 2 = 4py (400, 160) At (400, 160), 160,000 = 4p(160) 1000 = 4p p = 250 thus the equation is x 2 = 1000y At (300, h), 90,000 = 1000h h = 90 The cable would be 90 ft long at a point 100 ft from a tower.