MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II

Slides:



Advertisements
Similar presentations
PET Design: Simulation Studies using GEANT4 and GATE - Status Report - Martin Göttlich DESY.
Advertisements

MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.
Study of the MPPC Performance - contents - Introduction Fundamental properties microscopic laser scan –check variation within a sensor Summary and plans.
MEG実験アップグレードに向けたMPPC読み出しによる 新しいタイミングカウンターの研究開発
Mass test of MPPC with a prototype of MEG II liquid xenon detector
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Tests with JT0623 & JT0947 at Indiana University Nagoya PMT database test results for JT0623 at 3220V: This tube has somewhat higher than usual gain. 5×10.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration
SiPM を用いたシンチレーションカウンターによる 細分化ポジトロン時間測定器のビーム試験結果 西村美紀 ( 東大 ) 内山雄祐(素セ)、大谷航(素セ)、 M. de Gerone ( Genova Univ. )、 Flavio Gatti(Genova Univ.) 、調翔平(九 大) 他 MEGコラボレーション.
The MPPC Study for the GLD Calorimeter Readout Introduction Measurement of basic characteristics –Gain, Noise Rate, Cross-talk Measurement of uniformity.
MEG II 実験のための 陽電子タイミングカウンターの開発 PSI でのハイレートビーム試験 Development of Positron Timing Counter with SiPM for MEG-II Experiment Beam Test Result in the high rate.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
1 MPPC update S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira (KEK) Nov KEK.
MEG II 実験のための SiPM を用いた 陽電子タイミングカウンターのシミュレーションによる性能評価 Development of the waveform simulation for Positron Timing Counter with SiPM for MEG II Experiment.
Liquid Xenon Calorimeter Analysis R.Sawada on behalf of the MEG LXe analysis group 17/Feb/2009.
1 Energy loss correction for a crystal calorimeter He Miao Institute of High Energy Physics Beijing, P.R.China.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
R&D status of the Scintillator- strip based ECAL for the ILD Oct LCWS14 Belgrade Satoru Uozumi (KNU) For the CALICE collaboration Scintillator strips.
Development of Multi-Pixel Photon Counters(MPPC) Makoto Taguchi Kyoto University.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
東大素粒子セ, PSI A, UCI B, ETH C 岩本敏幸 A, 内山雄祐, 大谷航, 小曽根健嗣 A, 澤田龍, 名取寛顕, 西口創, 久松康子, 三原智, 森俊則, 山田秀衛 B, M.Schneebeli C, S.Ritt A 内山 雄祐 日本物理学会2006年年次大会 @愛媛大・松山大.
MEG 実験 背景ガンマ線の研究 澤田 龍 MEG コラボーレーション 東京大学素粒子物理国際研究センター 2010 年 9 月 11 日 日本物理学会 2010 年秋季大会 九州工業大学戸畑キャンパス.
Feature Extractor Dima Chirkin, LBNL The future is here.
(s)T3B Update – Calibration and Temperature Corrections AHCAL meeting– December 13 th 2011 – Hamburg Christian Soldner Max-Planck-Institute for Physics.
Digitization in EMC simulation Dmytro Melnychuk, Soltan Institute for Nuclear Studies, Warsaw, Poland.
PMT Calibration R.Sawada 7/Jan/2007. Time calibration Method was talked at the previous meeting. The problems which was shown before were because I used.
MEG II 実験液体キセノンガンマ線検出器 に向けた再構成法の研究 Development of the event reconstruction method for MEG II liquid xenon detector 小川真治、 他 MEG II 日本物理学会 2015.
Performance of new MPPC Nov. 21 Korea-Japan joint meeting Takashi Maeda Hideki Yamazaki Yuji Sudo (University of Tsukuba) --- Contents ---
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
Comparison of MC and data Abelardo Moralejo Padova.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
M.Taguchi and T.Nobuhara(Kyoto) HPK MPPC(Multi Pixel Photon Counter) status T2K280m meeting.
Performance of 1600-pixel MPPC for the GLD Calorimeter Readout Jan. 30(Tue.) Korea-Japan Joint Shinshu Univ. Takashi Maeda ( Univ. of Tsukuba)
 13 Readout Electronics A First Look 28-Jan-2004.
マイクロメッシュを用いた 三次元電場構造型μ-PICの開発
Development of Multi-Pixel Photon Counters (1)
Performance of scintillation pixel detectors with MPPC read-out and digital signal processing Mihael Makek with D. Bosnar, V. Gačić, L. Pavelić, P. Šenjug.
CEPC ScECAL Optimization for the 3th CEPC Physics Software Meeting
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
M. Alexeev on behalf of Torino TIGER Test Group
大強度
A First Look J. Pilcher 12-Mar-2004
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
NanoBPM Status and Multibunch Mark Slater, Cambridge University
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
MCP PET Simulation (7) – Pixelated X-tal
Development of hybrid photomultiplier for Hyper-Kamiokande
MPPC for T2K Fine-Grained Detector
MEG II実験 液体キセノン検出器の建設状況
Daisuke Kaneko, ICEPP, Univ. of Tokyo on behalf of MEG collaboration
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II 日本物理学会 第 70 回年次大会 1

Upgrade of LXe detector for MEG II Replace PMT of inner face to MPPC – Photon collection effeciency becomes uniform Change PMT alignment of lateral face – Energy leak decreases 2 MEG MEG II (CG) MEG MEG II wider log scale MEG MEG II Imaging power improves

Upgrade of LXe detector for MEG II Improvement of position and energy resolution was expected. 10% improvement of detection efficiency was also expected. These result was summarized in “MEG Upgrade Proposal (arXiv: ) ”. 3 depth ≧ 2cm 60 % of events depth < 2cm 40 % of events σ up 2.4% ↓ 1.1% σ up 1.7% ↓ 1.0%

Event reconstruction study with MC We recalculated the resolution of LXe detector with the realistic settings. – Measured characteristics of final version MPPC are used for this study. – Effect of crosstalk and afterpulse of MPPC are included. 4 PDEGainCrosstalk Prob. Afterpulse Prob. Proposal17%0.5 ×10 6 not simulated This study27%0.8 × % 27% PDE 0.8M Gain 15% Crosstalk Prob.

MC simulation Waveform of each sensor for signal gamma is made in MC simulation. This study considers – Reflectivity at the surface of MPPC – Crosstalk, after pulse, saturation of MPPC (including the change of waveform) – Noises on the waveform (same level with MEG I) – Digitization of waveform (dynamic range, sampling frequency) This study does not consider – Effect of the pileup. – Non-uniformity of gain, PDE, crosstalk etc… – Degradation of statistical term of energy resolution which we observed for VUV. 5 gem4 bartender waveform analysis Event Reconstruction Event Reconstruction MEG II analyzer hit of scitilation photon 1p.e. waveform simulated waveform # of p.e. timing

Waveform analysis In waveform analysis, charge (# of p.e.) and timing are calcultaed. Charge is calculated from fixed integration range (w/o digital high-pass filter). Constant fraction method is used for timing calculation (with 25% of pulse height threshold) For timing calculation of MPPC, sum waveform of 16 adjacent channels are used. (As we can not extract timing precisely from low p.e. waveform) 6 constant fraction time integration range 200ns pulse height * 0.25 simulated waveform

Waveform analysis for over range channel As PDE and gain increases, 35% of event have at least one channel in which pulse height becomes higher than dynamic range of waveform digitizer (950mV). We can avoid over range by decreasing amp gain but it leads to worse SN ratio, and it may result in worse resolution. (Quantitative estimation has not done yet.) However, appropriate waveform analysis to these over range channel is important for reconstruction as they have large # of p.e. 7 Number of over range channel per event 35% event have over range channel some channels become over range Pulse height vs #ofp.e. black:MPPC red:PMT

Waveform analysis for over range channel For these over range channel, TOT (Time Over Threshold) method are used for charge calculation in MEG I. Same method can be used for MEG II. Relation between TOT and charge are calculated beforehand. In this study, over range channels are not used for timing calculation mV TOT simulated waveform (over range ch) (#of p.e. from wf analysis) /(#of p.e. of MC truth) Red:Over Range channel (Npe>5000) Blue:Normal channel (Npe~4000) DRS dynamic range 0.2% rms 4% rms

Position reconstruction Position is reconstructed by fitting # of p.e. distribution with the solid angle from conversion point to each MPPCs. We estimated position resolution by comparing with MC truth. 9 u v w γ u v w

Position resolution Improvement of position resolution for shallow event from MEG I can be seen as we expected in proposal. 10

Energy reconstruction Energy is reconstructed by the summation of # of p.e. from all channels taking into acount of different coverage for each channel. Calibration with solid angle for shallow event is not used in MEG II. Resolution becomes %. (a little better than proposal) 11 depthabs resrel res w<2cm327 keV0.62% w>2cm280 keV0.53% Reconstructed Eγ (0<w<2cm) Reconstructed Eγ (w>2cm) (MeV)

Timing reconstruction Timing is reconstructed by fitting the time at each sensor, taking into acount of TOF from conversion point. Calibrations of time walk effect and calibrairon with position are done. Preliminary result shows 71ps resolution (similar resolution with MEG I). Optimization and improvement of the analysis are on going. 12 Preliminary 71ps resolution t γ (rec) - t γ (MC)

Summary Resolution of MEG II LXe detector are calculated with realistic settings from measured characteristics of final version MPPC. For position and energy, same or a little better resolution is confirmed. For timing, preliminary result shows similar resolution with MEG I. 13 ResolutionMEG IMEG II (Proposal) MEG II (this study) u (mm) v (mm) w (mm)653.7 E γ (w<2cm)2.4%1.1%1.0% E γ (w>2cm)1.7%1.0%0.9% t γ (ps) % contribution are assumed (from unsolved difference between MC and real detector in MEG I)

Prospect Calculation of the resolution with different settings – Type of series connection (4-seg was assumed for this study) – Noise level – Amp gain Estimation of the effect of the pileup. More optimization and improvement of reconstruction method for MEG II will be done. 14

backup 15

Total nphe for signal gamma Total nphe becomes higher thanks to higher PDE. PDE:17% -> 27% nphe:1.25×10 5 nphe:1.85×10 5 Due to 1.6 times degradation for VUV, (stat. term)=0.23% (stat. term)=0.38% Small enough but may not negligible. 16 MC truth without CTAP,ST red:PMT blue:MPPC black:PMT+MPPC Total # of p.e. for one signal gamma

MC nphe Maximum number of nphe in one signal gamma event. Due to higher PDE, effect of saturation can become bigger. 17 DRS OR 25% of pixels 35% of event 13% of event

CTAP,saturation in MC CTAP,Saturation of MPPC are simulated in bartender 18

# of p.e. from waveform analysis We checked wheather # of p.e. is calculated properly or not by comparing waveform analysis result with MC truth. Charge is calculated properly for most channels (including over range channel). 19 (#of p.e. from wf analysis)/(#ofp.e. of MC truth) TOT is used black:MPPC red:PMT For some channel,calculation is not done propoerly. 4% rms # of p.e.

reco.u u(reco)-u(MC) 20

reco.v v(reco)-v(MC) 21

reco.w w(reco)-w(MC) 22

reco.pos pos(reco)-pos(MC) at all depth 23 u sigma :2.7mm v sigma :2.3mm w sigma :3.7mm

reco.E vs reco.w After the energy calibration as a function of w 24

Tres vs recow Worse timing resolution for shallow event. 25 0<w<1cm1<w<2cm 2<w<3cm 3<w<5cm 5<w<7cm7<w<10cm 10<w<20cm 84ps69ps 65ps69ps 86ps Preliminary

Eres vs CTAP Energy resolution with different CTAP 26 Old setting Degradation of Eres due to CTAP were observed with Eres from MC truth.