HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Hawkes Learning Systems College Algebra.

Slides:



Advertisements
Similar presentations
Copyright © Cengage Learning. All rights reserved.
Advertisements

4.3 Matrix Approach to Solving Linear Systems 1 Linear systems were solved using substitution and elimination in the two previous section. This section.
Chapter 4 Systems of Linear Equations; Matrices Section 2 Systems of Linear Equations and Augmented Matrics.
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 4-1 Systems of Equations and Inequalities Chapter 4.
Lesson 8 Gauss Jordan Elimination
Chapter 2 Section 1 Solving a System of Linear Equations (using Matrices)
Chapter 1 Systems of Linear Equations
Linear Systems and Matrices
10.1 Gaussian Elimination Method
LIAL HORNSBY SCHNEIDER
Lesson 8.1, page 782 Matrix Solutions to Linear Systems
Chapter 1 Section 1.2 Echelon Form and Gauss-Jordan Elimination.
Section 8.1 – Systems of Linear Equations
Matrices Write and Augmented Matrix of a system of Linear Equations Write the system from the augmented matrix Solve Systems of Linear Equations using.
Introduction Information in science, business, and mathematics is often organized into rows and columns to form rectangular arrays called “matrices” (plural.
Linear Algebra – Linear Equations
1.2 Gaussian Elimination.
Multivariate Linear Systems and Row Operations.
Matrix Solution of Linear Systems The Gauss-Jordan Method Special Systems.
SYSTEMS OF LINEAR EQUATIONS
1 1.1 © 2012 Pearson Education, Inc. Linear Equations in Linear Algebra SYSTEMS OF LINEAR EQUATIONS.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Systems and Matrices (Chapter5)
Matrices King Saud University. If m and n are positive integers, then an m  n matrix is a rectangular array in which each entry a ij of the matrix is.
Copyright © Cengage Learning. All rights reserved. 7.4 Matrices and Systems of Equations.
Copyright © 2011 Pearson, Inc. 7.3 Multivariate Linear Systems and Row Operations.
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Sec 3.1 Introduction to Linear System Sec 3.2 Matrices and Gaussian Elemination The graph is a line in xy-plane The graph is a line in xyz-plane.
SYSTEMS OF EQUATIONS MATRIX SOLUTIONS TO LINEAR SYSTEMS
Euclidean m-Space & Linear Equations Row Reduction of Linear Systems.
Three variables Systems of Equations and Inequalities.
How To Find The Reduced Row Echelon Form. Reduced Row Echelon Form A matrix is said to be in reduced row echelon form provided it satisfies the following.
Row rows A matrix is a rectangular array of numbers. We subscript entries to tell their location in the array Matrices are identified by their size.
Chapter 6 Matrices and Determinants Copyright © 2014, 2010, 2007 Pearson Education, Inc Matrix Solutions to Linear Systems.
Sec 3.2 Matrices and Gaussian Elemination Coefficient Matrix 3 x 3 Coefficient Matrix 3 x 3 Augmented Coefficient Matrix 3 x 4 Augmented Coefficient Matrix.
Using Matrices A matrix is a rectangular array that can help us to streamline the solving of a system of equations The order of this matrix is 2 × 3 If.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Systems and Matrices Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Copyright © 2011 Pearson Education, Inc. Solving Linear Systems Using Matrices Section 6.1 Matrices and Determinants.
Matrices and Systems of Equations
Matrices and Systems of Linear Equations
Copyright © 2009 Pearson Education, Inc. CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations.
 SOLVE SYSTEMS OF EQUATIONS USING MATRICES. Copyright © 2012 Pearson Education, Inc. Publishing as Addison Wesley 9.3 Matrices and Systems of Equations.
Chapter 8 Matrices and Determinants Matrix Solutions to Linear Systems.
Section 4Chapter 4. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Solving Systems of Linear Equations by Matrix Methods Define.
Matrices and Systems of Equations
Meeting 19 System of Linear Equations. Linear Equations A solution of a linear equation in n variables is a sequence of n real numbers s 1, s 2,..., s.
7.3 & 7.4 – MATRICES AND SYSTEMS OF EQUATIONS. I N THIS SECTION, YOU WILL LEARN TO  Write a matrix and identify its order  Perform elementary row operations.
College Algebra Sixth Edition James Stewart Lothar Redlin Saleem Watson.
Chapter 1 Systems of Linear Equations Linear Algebra.
Copyright © Cengage Learning. All rights reserved. 2 SYSTEMS OF LINEAR EQUATIONS AND MATRICES Solve p. 87 #45 by elimination.
Copyright ©2015 Pearson Education, Inc. All rights reserved.
Section 5.3 MatricesAnd Systems of Equations. Systems of Equations in Two Variables.
Multivariable linear systems.  The following system is said to be in row-echelon form, which means that it has a “stair-step” pattern with leading coefficients.
Gaussian Elimination Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Gaussian elimination with back-substitution.
College Algebra Chapter 6 Matrices and Determinants and Applications
Linear Equations in Linear Algebra
Section 6.1 Systems of Linear Equations
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Gaussian Elimination and Gauss-Jordan Elimination
Solving Systems of Equations Using Matrices
Chapter 8: Lesson 8.1 Matrices & Systems of Equations
Matrices and Systems of Equations 8.1
Matrices and Systems of Equations
Gaussian Elimination and Gauss-Jordan Elimination
Elementary Row Operations Gaussian Elimination Method
College Algebra Chapter 6 Matrices and Determinants and Applications
Linear Equations in Linear Algebra
Section 8.1 – Systems of Linear Equations
Matrices are identified by their size.
Presentation transcript:

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Hawkes Learning Systems College Algebra Section 8.2: Matrix Notation and Gaussian Elimination

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Objectives o Linear systems, matrices, and augmented matrices. o Gaussian elimination and row echelon form. o Gauss-Jordan elimination and reduced row echelon form.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Linear Systems and Matrices Matrices and Matrix Notation A matrix is a rectangular array of numbers, called elements or entries of the matrix. They naturally form rows and columns. We say that a matrix with m rows and n columns is an matrix (read “m by n”), or of order. By convention, the number of rows is always stated first. A is a 2x3 matrix.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Linear Systems and Matrices Matrices are often labeled with capital letters. The same letter in lower case, with a pair of subscripts attached, is usually used to refer to its individual elements. For instance, if A is a matrix, refers to the element in the row and the column of A.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 1: Linear Systems and Matrices Given the matrix below, determine the following: a.The order of. b.The value of. c.The value of. A has 4 rows and 2 columns, so A is a 4x2 matrix. The first subscript refers to the row and the second subscript refers to the column, so find the entry in the 3 rd row and 2 nd column. Similarly, find the entry in the 1 st row, 1 st column.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Linear Systems and Augmented Matrices Augmented Matrices The augmented matrix of a linear system of equations is a matrix consisting of the coefficients of the variables, with an adjoined column consisting of the constants from the right-hand side of the system. The matrix of coefficients and the column of constants are customarily separated by a vertical bar. For example, the augmented matrix for the system is.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 2: Linear Systems and Augmented Matrices Construct the augmented matrix for the linear system. Our first step is to write each equation in standard form. Now we can convert the coefficients and constants into an augmented matrix.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 3: Linear Systems and Augmented Matrices Construct the linear system for the augmented matrix. First, we need to assign each of the coefficient columns to a variable. Now we can create the system of equations.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Gaussian Elimination and Row Echelon Form Consider the following augmented matrix. If we translate this back into system form we obtain and can easily solve for the variables by back substitution.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Gaussian Elimination and Row Echelon Form The point of Gaussian elimination is that it transforms an arbitrary augmented matrix into a form (called row echelon form) like the one on the previous slide. Row Echelon Form A matrix is in row echelon form if: 1.The first non-zero entry in each row is 1. 2.Every entry below each 1 (called a leading 1) is 0, and each leading 1 appears one digit farther to the right than the leading 1 in the previous row. 3.All rows consisting entirely of 0’s appear at the bottom.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Row Echelon Form The matrix below is in row echelon form. However, the matrix below is not in row echelon form because the first non-zero entries in the second and third rows are not 1.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Gaussian Elimination and Row Echelon Form Elementary Row Operations Assume is an augmented matrix corresponding to a given system of equations. Each of the following operations on results in the augmented matrix of an equivalent system. In the notation, refers to row of the matrix. 1.Rows and can be interchanged. (Denoted ) 2.Each entry in row can be multiplied by a non-zero constant. (Denoted ) 3.Row can be replaced with the sum of itself and a constant multiple of row. (Denoted )

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 4: Gaussian Elimination and Row Echelon Form Use Gaussian Elimination to solve the system. Augmented matrix form Continued on the next slide…

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 4: Gaussian Elimination and Row Echelon Form (Cont.) The final matrix is in row echelon form. Continued on the next slide…

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 4: Gaussian Elimination and Row Echelon Form (Cont.) Now we can solve for x, y and z. Given by the last row of the matrix. Plug the value found for z into the equation given by the 2 nd row of the matrix. Plug the values found for y and z into the 1 st row of the matrix. The solution set to this system.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 5: Gaussian Elimination and Row Echelon Form Use Gaussian Elimination to solve the system. Augmented matrix form We can stop here because is a false statement. Therefore,

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Gauss-Jordan Elimination and Reduced Row Echelon Form The goal of Gauss-Jordan elimination is to put a given matrix into reduced row echelon form. Reduced Row Echelon Form A matrix is said to be in reduced row echelon form if: 1.It is in row echelon form. 2.Each entry above a leading 1 is also 0. For example, the following matrix is in reduced row echelon form.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Gauss-Jordan Elimination and Reduced Row Echelon Form Consider the last matrix obtained in Example 4. Reduced row echelon form. Now we can write the system as which is equivalent to the original system, but in a form that tells us the solution to the system.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 6: Gauss-Jordan Elimination and Reduced Row Echelon Form Use Gauss-Jordan elimination to solve the system.

HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Example 6: Gauss-Jordan Elimination and Reduced Row Echelon Form (Cont.) Thus, we can write this in system form and the solution set for this system is the ordered triple