Centrality in Social Networks Background: At the individual level, one dimension of position in the network can be captured through centrality. Conceptually,

Slides:



Advertisements
Similar presentations
Dr. Henry Hexmoor Department of Computer Science Southern Illinois University Carbondale Network Theory: Computational Phenomena and Processes Social Network.
Advertisements

Network Matrix and Graph. Network Size Network size – a number of actors (nodes) in a network, usually denoted as k or n Size is critical for the structure.
Introduction to Network Theory: Modern Concepts, Algorithms
Analysis and Modeling of Social Networks Foudalis Ilias.
SOCI 5013: Advanced Social Research: Network Analysis Spring 2004.
Introduction to Social Network Analysis Lluís Coromina Departament d’Economia. Universitat de Girona Girona, 18/01/2005.
Identity and search in social networks Presented by Pooja Deodhar Duncan J. Watts, Peter Sheridan Dodds and M. E. J. Newman.
Centrality in Social Networks
Correlation and Autocorrelation
Using Structure Indices for Efficient Approximation of Network Properties Matthew J. Rattigan, Marc Maier, and David Jensen University of Massachusetts.
Centrality and Prestige HCC Spring 2005 Wednesday, April 13, 2005 Aliseya Wright.
Calculating & Reporting Healthcare Statistics
Centrality Measures These measure a nodes importance or prominence in the network. The more central a node is in a network the more significant it is to.
Preference Analysis Joachim Giesen and Eva Schuberth May 24, 2006.
HCC class lecture 22 comments John Canny 4/13/05.
Network Measures Social Media Mining. 2 Measures and Metrics 2 Social Media Mining Network Measures Klout.
Models of Influence in Online Social Networks
@ 2012 Wadsworth, Cengage Learning Chapter 5 Description of Behavior Through Numerical 2012 Wadsworth, Cengage Learning.
Descriptive Statistics Used to describe the basic features of the data in any quantitative study. Both graphical displays and descriptive summary statistics.
Overview Granovetter: Strength of Weak Ties What are ‘weak ties’? why are they ‘strong’? Burt: Structural Holes What are they? What do they do? How do.
Spectral coordinate of node u is its location in the k -dimensional spectral space: Spectral coordinates: The i ’th component of the spectral coordinate.
Overview Summarizing Data – Central Tendency - revisited Summarizing Data – Central Tendency - revisited –Mean, Median, Mode Deviation scores Deviation.
The importance of enzymes and their occurrences: from the perspective of a network W.C. Liu 1, W.H. Lin 1, S.T. Yang 1, F. Jordan 2 and A.J. Davis 3, M.J.
Presentation: Random Walk Betweenness, J. Govorčin Laboratory for Data Technologies, Faculty of Information Studies, Novo mesto – September 22, 2011 Random.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Descriptive Statistics Descriptive Statistics describe a set of data.
Victor Lee.  What are Social Networks?  Role and Position Analysis  Equivalence Models for Roles  Block Modelling.
Principles of Social Network Analysis. Definition of Social Networks “A social network is a set of actors that may have relationships with one another”
Centrality in undirected networks These slides are by Prof. James Moody at Ohio State.
Lecture7 Topic1: Graph spectral analysis/Graph spectral clustering and its application to metabolic networks Topic 2: Different centrality measures of.
Centrality Spring 2012.
1 Psych 5500/6500 Standard Deviations, Standard Scores, and Areas Under the Normal Curve Fall, 2008.
School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2013 Figures are taken.
Social Network Analysis Prof. Dr. Daning Hu Department of Informatics University of Zurich Mar 5th, 2013.
"Social Networks, Cohesion and Epidemic Potential" James Moody Department of Sociology Department of Mathematics Undergraduate Recognition Ceremony May.
School of Information University of Michigan Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution.
Mining Social Networks for Personalized Prioritization Shinjae Yoo, Yiming Yang, Frank Lin, II-Chul Moon [KDD ’09] 1 Advisor: Dr. Koh Jia-Ling Reporter:
Lecture 13: Network centrality Slides are modified from Lada Adamic.
Descriptive Statistics Descriptive Statistics describe a set of data.
Connectivity & Cohesion Overview Background: Small World = Connected What distinguishes simple connection from cohesion? Moody & White Argument Measure.
Susan O’Shea The Mitchell Centre for Social Network Analysis CCSR/Social Statistics, University of Manchester
Centrality in Social Networks Background: At the individual level, one dimension of position in the network can be captured through centrality. Conceptually,
Lab 4: Working with NetDraw
Slides are modified from Lada Adamic
Hierarchy Overview Background: Hierarchy surrounds us: what is it? Micro foundations of social stratification Ivan Chase: Structure from process Action.
Graphs & Matrices Todd Cromedy & Bruce Nicometo March 30, 2004.
Chapter Eight: Using Statistics to Answer Questions.
1 Epidemic Potential in Human Sexual Networks: Connectivity and The Development of STD Cores.
Structural Holes & Weak Ties
11 Network Level Indicators Bird’s eye view of network Image matrix example of network level Many network level measures Some would argue this is the most.
HCC class lecture 21: Intro to Social Networks John Canny 4/11/05.
How to Analyse Social Network? Social networks can be represented by complex networks.
Measurements and Their Analysis. Introduction Note that in this chapter, we are talking about multiple measurements of the same quantity Numerical analysis.
Community structure in graphs Santo Fortunato. More links “inside” than “outside” Graphs are “sparse” “Communities”
Informatics tools in network science
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Importance Measures on Nodes Lecture 2 Srinivasan Parthasarathy 1.
Lecture 7: Bivariate Statistics. 2 Properties of Standard Deviation Variance is just the square of the S.D. If a constant is added to all scores, it has.
Response network emerging from simple perturbation Seung-Woo Son Complex System and Statistical Physics Lab., Dept. Physics, KAIST, Daejeon , Korea.
Yee San Su CNA, Safety & Security November 3, 2011 Network Analysis Based Methods for Assessing Coordination in Exercises.
Linear Algebra Review.
Groups of vertices and Core-periphery structure
Social Networks Analysis
Department of Computer and IT Engineering University of Kurdistan
Node Similarity Ralucca Gera,
Centralities (2) Ralucca Gera,
Peer-to-Peer and Social Networks
Section 7.12: Similarity By: Ralucca Gera, NPS.
Centralities (4) Ralucca Gera,
Chapter Nine: Using Statistics to Answer Questions
Presentation transcript:

Centrality in Social Networks Background: At the individual level, one dimension of position in the network can be captured through centrality. Conceptually, centrality is fairly straight forward: we want to identify which nodes are in the ‘center’ of the network. In practice, identifying exactly what we mean by ‘center’ is somewhat complicated. Approaches: Degree Closeness Betweenness Information & Power Graph Level measures: Centralization Applications: (Day 2) Friedkin: Interpersonal Influence in Groups Alderson and Beckfield: World City Systems

Centrality in Social Networks Centrality and Network Flow

In recent work, Borgatti (2003; 2005) discusses centrality in terms of two key dimensions: Radial Medial Frequency Distance Degree Centrality Bon. Power centrality Closeness Centrality Betweenness (empty: but would be an interruption measure based on distance, but see Borgatti forthcoming) Centrality in Social Networks Power / Eigenvalue

He expands this set in the paper w. Everet to look at the “production” side. -All measures are features of a nodes position in the pattern of “walks” on networks: -Walk Type (geodesic, edge-disjoint) -Walk Property (i.e Volume, length) -Walk Position (Node involvement – radial, medial – passing through or ending on, etc.) -Summary type (Sum, mean, etc.) Centrality in Social Networks Power / Eigenvalue Ultimately dyadic cohesion of sundry sorts is the thing being summarized

Intuitively, we want a method that allows us to distinguish “important” actors. Consider the following graphs: Centrality in Social Networks

The most intuitive notion of centrality focuses on degree: The actor with the most ties is the most important: Centrality in Social Networks Degree

In a simple random graph (G n,p ), degree will have a Poisson distribution, and the nodes with high degree are likely to be at the intuitive center. Deviations from a Poisson distribution suggest non-random processes, which is at the heart of current “scale-free” work on networks (see below). Centrality in Social Networks Degree

Degree centrality, however, can be deceiving, because it is a purely local measure. Centrality in Social Networks Degree

If we want to measure the degree to which the graph as a whole is centralized, we look at the dispersion of centrality: Simple: variance of the individual centrality scores. Or, using Freeman’s general formula for centralization (which ranges from 0 to 1): UCINET, SPAN, PAJEK and most other network software will calculate these measures. Centrality in Social Networks Degree

Degree Centralization Scores Freeman:.07 Variance:.20 Freeman: 1.0 Variance: 3.9 Freeman:.02 Variance:.17 Freeman: 0.0 Variance: 0.0 Centrality in Social Networks Degree

A second measure of centrality is closeness centrality. An actor is considered important if he/she is relatively close to all other actors. Closeness is based on the inverse of the distance of each actor to every other actor in the network. Closeness Centrality: Normalized Closeness Centrality Centrality in Social Networks Closeness

Distance Closeness normalized Closeness Centrality in the examples Distance Closeness normalized Centrality in Social Networks Closeness

Distance Closeness normalized Closeness Centrality in the examples Centrality in Social Networks Degree

Distance Closeness normalized Closeness Centrality in the examples Centrality in Social Networks Degree

Betweenness Centrality: Model based on communication flow: A person who lies on communication paths can control communication flow, and is thus important. Betweenness centrality counts the number of shortest paths between i and k that actor j resides on. b a C d e f g h Centrality in Social Networks Betweenness

Betweenness Centrality: Where g jk = the number of geodesics connecting jk, and g jk (n i ) = the number that actor i is on. Usually normalized by: Centrality in Social Networks Betweenness

Centralization: 1.0 Centralization:.31 Centralization:.59 Centralization: 0 Betweenness Centrality: Centrality in Social Networks Betweenness

Centralization:.183 Betweenness Centrality: Centrality in Social Networks Betweenness

Information Centrality: It is quite likely that information can flow through paths other than the geodesic. The Information Centrality score uses all paths in the network, and weights them based on their length. Centrality in Social Networks Information

Information Centrality: Centrality in Social Networks Information

Graph Theoretic Center (Barry or Jordan Center). Identify the point(s) with the smallest, maximum distance to all other points. Value = longest distance to any other node. The graph theoretic center is ‘3’, but you might also consider a continuous measure as the inverse of the maximum geodesic Centrality in Social Networks Graph Theoretic Center

Comparing across these 3 centrality values Generally, the 3 centrality types will be positively correlated When they are not (low) correlated, it probably tells you something interesting about the network. Low Degree Low Closeness Low Betweenness High Degree Embedded in cluster that is far from the rest of the network Ego's connections are redundant - communication bypasses him/her High Closeness Key player tied to important important/active alters Probably multiple paths in the network, ego is near many people, but so are many others High Betweenness Ego's few ties are crucial for network flow Very rare cell. Would mean that ego monopolizes the ties from a small number of people to many others. Centrality in Social Networks Comparison

Bonacich Power Centrality: Actor’s centrality (prestige) is equal to a function of the prestige of those they are connected to. Thus, actors who are tied to very central actors should have higher prestige/ centrality than those who are not.  is a scaling vector, which is set to normalize the score.  reflects the extent to which you weight the centrality of people ego is tied to. R is the adjacency matrix (can be valued) I is the identity matrix (1s down the diagonal) 1 is a matrix of all ones. Centrality in Social Networks Power / Eigenvalue

Bonacich Power Centrality: The magnitude of  reflects the radius of power. Small values of  weight local structure, larger values weight global structure. If  is positive, then ego has higher centrality when tied to people who are central. If  is negative, then ego has higher centrality when tied to people who are not central. As  approaches zero, you get degree centrality. Centrality in Social Networks Power / Eigenvalue

Bonacich Power Centrality is closely related to eigenvector centrality (difference is  ): Centrality in Social Networks Power / Eigenvalue (Equivalently, (A−λI)v = 0, where I is the identity matrix)

Centrality in Social Networks Power / Eigenvalue proc iml; %include 'c:\jwm\sas\modules\bcent.mod'; x=j(200,200,0); x=ranbin(x,1,.02); x=x-diag(x); x=x+x`; deg=x[,+]; ev=eigvec(x)[,1]; /* just take the first eigenvector */ step=3; di=deg; do i=1 to step; di=x*di; dis=di/sum(di); end; ev=eigval(x); /* largest Eigenvalue */ maxev=max(ev[,1]); bw=.75*(1/maxev); /* largest beta liited by EV */ bcscores = bcent(x,bw); bc=bcscores[,2]; create work.compare var{"deg" "ev" "di" "dis" "bc"}; append; quit; Degree Degree Weighted by Neighbor

Centrality in Social Networks Power / Eigenvalue proc iml; %include 'c:\jwm\sas\modules\bcent.mod'; x=j(200,200,0); x=ranbin(x,1,.02); x=x-diag(x); x=x+x`; deg=x[,+]; ev=eigvec(x)[,1]; /* just take the first eigenvector */ step=3; di=deg; do i=1 to step; di=x*di; dis=di/sum(di); end; ev=eigval(x); /* largest Eigenvalue */ maxev=max(ev[,1]); bw=.75*(1/maxev); /* largest beta liited by EV */ bcscores = bcent(x,bw); bc=bcscores[,2]; create work.compare var{"deg" "ev" "di" "dis" "bc"}; append; quit; Bonacich (.75) Bonacich (.25)

Bonacich Power Centrality:  = 0.23 Centrality in Social Networks Power / Eigenvalue

 =.35  =-.35 Bonacich Power Centrality: Centrality in Social Networks Power / Eigenvalue

Bonacich Power Centrality:  =.23  = -.23 Centrality in Social Networks Power / Eigenvalue

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White They use a very similar idea to identify “robust positions” in networks

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White Note their notation is transposed to what we usually do!

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White H as a function of degree, by size.

This is the key bit:

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White Based on the Gangon Prison network

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White C=portion of the largest eigenvalue - weight

Centrality in Social Networks Power / Eigenvalue Bothner Smith & White

Centrality in Social Networks Rossman et al: “thank the academy”

Centrality in Social Networks Other Options There are other options, usually based on generalizing some aspect of those above: Random Walk Betweenness (Mark Newman). Looks at the number of times you would expect node I to be on the path between k and j if information traveled a ‘random walk’ through the network. Peer Influence based measures (Friedkin and others). Based on the assumed network autocorrelation model of peer influence. In practice it’s a variant of the eigenvector centrality measures. Subgraph centrality. Counts the number of cliques of size 2, 3, 4, … n-1 that each node belongs to. Reduces to (another) function of the eigenvalues. Very similar to influence & information centrality, but does distinguish some unique positions. Fragmentation centrality – Part of Borgatti’s Key Player idea, where nodes are central if they can easily break up a network. Moody & White’s Embeddedness measure is technically a group-level index, but captures the extent to which a given set of nodes are nested inside a network Removal Centrality – effect on the rest of the (graph for any given statistic) with the removal of a given node. Really gets at the system-contribution of a particular actor.

Noah Friedkin: Structural bases of interpersonal influence in groups Interested in identifying the structural bases of power. In addition to resources, he identifies: Cohesion Similarity Centrality Which are thought to affect interpersonal visibility and salience

Cohesion Members of a cohesive group are likely to be aware of each others opinions, because information diffuses quickly within the group. Groups encourage (through balance) reciprocity and compromise. This likely increases the salience of opinions of other group members, over non-group members. Actors P and O are structurally cohesive if they are joint members of a cohesive group. The greater their cohesion, the more likely they are to influence each other. Note some of the other characteristics he identifies (p.862): Inclination to remain in the group Members capacity for social control and collective action Are these useful indicators of cohesion? Noah Friedkin: Structural bases of interpersonal influence in groups

Structural Similarity Two people may not be directly connected, but occupy a similar position in the structure. As such, they have similar interests in outcomes that relate to positions in the structure. Similarity must be conditioned on visibility. P must know that O is in the same position, which means that the effect of similarity might be conditional on communication frequency.

Noah Friedkin: Structural bases of interpersonal influence in groups Centrality Central actors are likely more influential. They have greater access to information and can communicate their opinions to others more efficiently. Research shows they are also more likely to use the communication channels than are periphery actors.

Noah Friedkin: Structural bases of interpersonal influence in groups French & Raven propose alternative bases for dyadic power: 1.Reward power, based on P’s perception that O has the ability to mediate rewards 2.Coercive power – P’s perception that O can punish 3.Legitimate power – based on O’s legitimate right to power 4.Referent power – based on P’s identification w. O 5.Expert power – based on O’s special knowledge Friedkin created a matrix of power attribution, b k, where the ij entry = 1 if person i says that person j has this base of power.

Noah Friedkin: Structural bases of interpersonal influence in groups Substantive questions: Influence in establishing school performance criteria. Data on 23 teachers collected in 2 waves Dyads are the unit of analysis (P--> O): want to measure the extent of influence of one actor on another. Each teacher identified how much an influence others were on their opinion about school performance criteria. Cohesion = probability of a flow of events (communication) between them, within 3 steps. Similarity = pairwise measure of equivalence (profile correlations) Centrality = TEC (power centrality)

Total Effects Centrality (Friedkin). Very similar to the Bonacich measure, it is based on an assumed peer influence model. The formula is: Where W is a row-normalized adjacency matrix, and  is a weight for the amount of interpersonal influence

Find that each matter for interpersonal communication, and that communication is what matters most for interpersonal influence Noah Friedkin: Structural bases of interpersonal influence in groups

World City System

Relation among centrality measures (from table 3) Ln(out-degree) Ln(Betweenness) Ln(Closeness) Ln(In-Degree) r=0.88 N=41 r=0.88 N=33 r=0.62 N=26 r=0.84 N=32 r=0.62 N=25 r=0.78 N=40

World City System

Centrality & Aggression Faris & Felmlee, ASR

Centrality & Aggression Faris & Felmlee, ASR

Multiple cross- gender friends